| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ere | ⊢ e  ∈  ℝ | 
						
							| 2 | 1 | recni | ⊢ e  ∈  ℂ | 
						
							| 3 |  | ene0 | ⊢ e  ≠  0 | 
						
							| 4 |  | cxpef | ⊢ ( ( e  ∈  ℂ  ∧  e  ≠  0  ∧  𝐴  ∈  ℂ )  →  ( e ↑𝑐 𝐴 )  =  ( exp ‘ ( 𝐴  ·  ( log ‘ e ) ) ) ) | 
						
							| 5 | 2 3 4 | mp3an12 | ⊢ ( 𝐴  ∈  ℂ  →  ( e ↑𝑐 𝐴 )  =  ( exp ‘ ( 𝐴  ·  ( log ‘ e ) ) ) ) | 
						
							| 6 |  | loge | ⊢ ( log ‘ e )  =  1 | 
						
							| 7 | 6 | oveq2i | ⊢ ( 𝐴  ·  ( log ‘ e ) )  =  ( 𝐴  ·  1 ) | 
						
							| 8 |  | mulrid | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ·  1 )  =  𝐴 ) | 
						
							| 9 | 7 8 | eqtrid | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ·  ( log ‘ e ) )  =  𝐴 ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( 𝐴  ∈  ℂ  →  ( exp ‘ ( 𝐴  ·  ( log ‘ e ) ) )  =  ( exp ‘ 𝐴 ) ) | 
						
							| 11 | 5 10 | eqtrd | ⊢ ( 𝐴  ∈  ℂ  →  ( e ↑𝑐 𝐴 )  =  ( exp ‘ 𝐴 ) ) |