| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efgval.w |  |-  W = ( _I ` Word ( I X. 2o ) ) | 
						
							| 2 |  | efgval.r |  |-  .~ = ( ~FG ` I ) | 
						
							| 3 |  | efgval2.m |  |-  M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) | 
						
							| 4 |  | efgval2.t |  |-  T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) | 
						
							| 5 |  | efgred.d |  |-  D = ( W \ U_ x e. W ran ( T ` x ) ) | 
						
							| 6 |  | efgred.s |  |-  S = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) | 
						
							| 7 |  | efgredlem.1 |  |-  ( ph -> A. a e. dom S A. b e. dom S ( ( # ` ( S ` a ) ) < ( # ` ( S ` A ) ) -> ( ( S ` a ) = ( S ` b ) -> ( a ` 0 ) = ( b ` 0 ) ) ) ) | 
						
							| 8 |  | efgredlem.2 |  |-  ( ph -> A e. dom S ) | 
						
							| 9 |  | efgredlem.3 |  |-  ( ph -> B e. dom S ) | 
						
							| 10 |  | efgredlem.4 |  |-  ( ph -> ( S ` A ) = ( S ` B ) ) | 
						
							| 11 |  | efgredlem.5 |  |-  ( ph -> -. ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 12 | 1 2 3 4 5 6 | efgsval |  |-  ( B e. dom S -> ( S ` B ) = ( B ` ( ( # ` B ) - 1 ) ) ) | 
						
							| 13 | 9 12 | syl |  |-  ( ph -> ( S ` B ) = ( B ` ( ( # ` B ) - 1 ) ) ) | 
						
							| 14 | 1 2 3 4 5 6 | efgsval |  |-  ( A e. dom S -> ( S ` A ) = ( A ` ( ( # ` A ) - 1 ) ) ) | 
						
							| 15 | 8 14 | syl |  |-  ( ph -> ( S ` A ) = ( A ` ( ( # ` A ) - 1 ) ) ) | 
						
							| 16 | 10 15 | eqtr3d |  |-  ( ph -> ( S ` B ) = ( A ` ( ( # ` A ) - 1 ) ) ) | 
						
							| 17 | 13 16 | eqtr3d |  |-  ( ph -> ( B ` ( ( # ` B ) - 1 ) ) = ( A ` ( ( # ` A ) - 1 ) ) ) | 
						
							| 18 |  | oveq1 |  |-  ( ( # ` A ) = 1 -> ( ( # ` A ) - 1 ) = ( 1 - 1 ) ) | 
						
							| 19 |  | 1m1e0 |  |-  ( 1 - 1 ) = 0 | 
						
							| 20 | 18 19 | eqtrdi |  |-  ( ( # ` A ) = 1 -> ( ( # ` A ) - 1 ) = 0 ) | 
						
							| 21 | 20 | fveq2d |  |-  ( ( # ` A ) = 1 -> ( A ` ( ( # ` A ) - 1 ) ) = ( A ` 0 ) ) | 
						
							| 22 | 17 21 | sylan9eq |  |-  ( ( ph /\ ( # ` A ) = 1 ) -> ( B ` ( ( # ` B ) - 1 ) ) = ( A ` 0 ) ) | 
						
							| 23 | 10 | eleq1d |  |-  ( ph -> ( ( S ` A ) e. D <-> ( S ` B ) e. D ) ) | 
						
							| 24 | 1 2 3 4 5 6 | efgs1b |  |-  ( A e. dom S -> ( ( S ` A ) e. D <-> ( # ` A ) = 1 ) ) | 
						
							| 25 | 8 24 | syl |  |-  ( ph -> ( ( S ` A ) e. D <-> ( # ` A ) = 1 ) ) | 
						
							| 26 | 1 2 3 4 5 6 | efgs1b |  |-  ( B e. dom S -> ( ( S ` B ) e. D <-> ( # ` B ) = 1 ) ) | 
						
							| 27 | 9 26 | syl |  |-  ( ph -> ( ( S ` B ) e. D <-> ( # ` B ) = 1 ) ) | 
						
							| 28 | 23 25 27 | 3bitr3d |  |-  ( ph -> ( ( # ` A ) = 1 <-> ( # ` B ) = 1 ) ) | 
						
							| 29 | 28 | biimpa |  |-  ( ( ph /\ ( # ` A ) = 1 ) -> ( # ` B ) = 1 ) | 
						
							| 30 |  | oveq1 |  |-  ( ( # ` B ) = 1 -> ( ( # ` B ) - 1 ) = ( 1 - 1 ) ) | 
						
							| 31 | 30 19 | eqtrdi |  |-  ( ( # ` B ) = 1 -> ( ( # ` B ) - 1 ) = 0 ) | 
						
							| 32 | 31 | fveq2d |  |-  ( ( # ` B ) = 1 -> ( B ` ( ( # ` B ) - 1 ) ) = ( B ` 0 ) ) | 
						
							| 33 | 29 32 | syl |  |-  ( ( ph /\ ( # ` A ) = 1 ) -> ( B ` ( ( # ` B ) - 1 ) ) = ( B ` 0 ) ) | 
						
							| 34 | 22 33 | eqtr3d |  |-  ( ( ph /\ ( # ` A ) = 1 ) -> ( A ` 0 ) = ( B ` 0 ) ) | 
						
							| 35 | 11 34 | mtand |  |-  ( ph -> -. ( # ` A ) = 1 ) | 
						
							| 36 | 1 2 3 4 5 6 | efgsdm |  |-  ( A e. dom S <-> ( A e. ( Word W \ { (/) } ) /\ ( A ` 0 ) e. D /\ A. u e. ( 1 ..^ ( # ` A ) ) ( A ` u ) e. ran ( T ` ( A ` ( u - 1 ) ) ) ) ) | 
						
							| 37 | 36 | simp1bi |  |-  ( A e. dom S -> A e. ( Word W \ { (/) } ) ) | 
						
							| 38 |  | eldifsn |  |-  ( A e. ( Word W \ { (/) } ) <-> ( A e. Word W /\ A =/= (/) ) ) | 
						
							| 39 |  | lennncl |  |-  ( ( A e. Word W /\ A =/= (/) ) -> ( # ` A ) e. NN ) | 
						
							| 40 | 38 39 | sylbi |  |-  ( A e. ( Word W \ { (/) } ) -> ( # ` A ) e. NN ) | 
						
							| 41 | 8 37 40 | 3syl |  |-  ( ph -> ( # ` A ) e. NN ) | 
						
							| 42 |  | elnn1uz2 |  |-  ( ( # ` A ) e. NN <-> ( ( # ` A ) = 1 \/ ( # ` A ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 43 | 41 42 | sylib |  |-  ( ph -> ( ( # ` A ) = 1 \/ ( # ` A ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 44 | 43 | ord |  |-  ( ph -> ( -. ( # ` A ) = 1 -> ( # ` A ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 45 | 35 44 | mpd |  |-  ( ph -> ( # ` A ) e. ( ZZ>= ` 2 ) ) | 
						
							| 46 |  | uz2m1nn |  |-  ( ( # ` A ) e. ( ZZ>= ` 2 ) -> ( ( # ` A ) - 1 ) e. NN ) | 
						
							| 47 | 45 46 | syl |  |-  ( ph -> ( ( # ` A ) - 1 ) e. NN ) | 
						
							| 48 | 35 28 | mtbid |  |-  ( ph -> -. ( # ` B ) = 1 ) | 
						
							| 49 | 1 2 3 4 5 6 | efgsdm |  |-  ( B e. dom S <-> ( B e. ( Word W \ { (/) } ) /\ ( B ` 0 ) e. D /\ A. u e. ( 1 ..^ ( # ` B ) ) ( B ` u ) e. ran ( T ` ( B ` ( u - 1 ) ) ) ) ) | 
						
							| 50 | 49 | simp1bi |  |-  ( B e. dom S -> B e. ( Word W \ { (/) } ) ) | 
						
							| 51 |  | eldifsn |  |-  ( B e. ( Word W \ { (/) } ) <-> ( B e. Word W /\ B =/= (/) ) ) | 
						
							| 52 |  | lennncl |  |-  ( ( B e. Word W /\ B =/= (/) ) -> ( # ` B ) e. NN ) | 
						
							| 53 | 51 52 | sylbi |  |-  ( B e. ( Word W \ { (/) } ) -> ( # ` B ) e. NN ) | 
						
							| 54 | 9 50 53 | 3syl |  |-  ( ph -> ( # ` B ) e. NN ) | 
						
							| 55 |  | elnn1uz2 |  |-  ( ( # ` B ) e. NN <-> ( ( # ` B ) = 1 \/ ( # ` B ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 56 | 54 55 | sylib |  |-  ( ph -> ( ( # ` B ) = 1 \/ ( # ` B ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 57 | 56 | ord |  |-  ( ph -> ( -. ( # ` B ) = 1 -> ( # ` B ) e. ( ZZ>= ` 2 ) ) ) | 
						
							| 58 | 48 57 | mpd |  |-  ( ph -> ( # ` B ) e. ( ZZ>= ` 2 ) ) | 
						
							| 59 |  | uz2m1nn |  |-  ( ( # ` B ) e. ( ZZ>= ` 2 ) -> ( ( # ` B ) - 1 ) e. NN ) | 
						
							| 60 | 58 59 | syl |  |-  ( ph -> ( ( # ` B ) - 1 ) e. NN ) | 
						
							| 61 | 47 60 | jca |  |-  ( ph -> ( ( ( # ` A ) - 1 ) e. NN /\ ( ( # ` B ) - 1 ) e. NN ) ) |