| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asinval |
|- ( A e. CC -> ( arcsin ` A ) = ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 2 |
1
|
oveq2d |
|- ( A e. CC -> ( _i x. ( arcsin ` A ) ) = ( _i x. ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 3 |
|
ax-icn |
|- _i e. CC |
| 4 |
3
|
a1i |
|- ( A e. CC -> _i e. CC ) |
| 5 |
|
negicn |
|- -u _i e. CC |
| 6 |
5
|
a1i |
|- ( A e. CC -> -u _i e. CC ) |
| 7 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 8 |
3 7
|
mpan |
|- ( A e. CC -> ( _i x. A ) e. CC ) |
| 9 |
|
ax-1cn |
|- 1 e. CC |
| 10 |
|
sqcl |
|- ( A e. CC -> ( A ^ 2 ) e. CC ) |
| 11 |
|
subcl |
|- ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 12 |
9 10 11
|
sylancr |
|- ( A e. CC -> ( 1 - ( A ^ 2 ) ) e. CC ) |
| 13 |
12
|
sqrtcld |
|- ( A e. CC -> ( sqrt ` ( 1 - ( A ^ 2 ) ) ) e. CC ) |
| 14 |
8 13
|
addcld |
|- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC ) |
| 15 |
|
asinlem |
|- ( A e. CC -> ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) |
| 16 |
14 15
|
logcld |
|- ( A e. CC -> ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) e. CC ) |
| 17 |
4 6 16
|
mulassd |
|- ( A e. CC -> ( ( _i x. -u _i ) x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( _i x. ( -u _i x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) ) |
| 18 |
3 3
|
mulneg2i |
|- ( _i x. -u _i ) = -u ( _i x. _i ) |
| 19 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 20 |
19
|
negeqi |
|- -u ( _i x. _i ) = -u -u 1 |
| 21 |
|
negneg1e1 |
|- -u -u 1 = 1 |
| 22 |
18 20 21
|
3eqtri |
|- ( _i x. -u _i ) = 1 |
| 23 |
22
|
oveq1i |
|- ( ( _i x. -u _i ) x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( 1 x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 24 |
16
|
mullidd |
|- ( A e. CC -> ( 1 x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 25 |
23 24
|
eqtrid |
|- ( A e. CC -> ( ( _i x. -u _i ) x. ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 26 |
2 17 25
|
3eqtr2d |
|- ( A e. CC -> ( _i x. ( arcsin ` A ) ) = ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) |
| 27 |
26
|
fveq2d |
|- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) = ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) ) |
| 28 |
|
eflog |
|- ( ( ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) e. CC /\ ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) =/= 0 ) -> ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 29 |
14 15 28
|
syl2anc |
|- ( A e. CC -> ( exp ` ( log ` ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |
| 30 |
27 29
|
eqtrd |
|- ( A e. CC -> ( exp ` ( _i x. ( arcsin ` A ) ) ) = ( ( _i x. A ) + ( sqrt ` ( 1 - ( A ^ 2 ) ) ) ) ) |