| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asinval |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) = ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( arcsin ‘ 𝐴 ) ) = ( i · ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
| 3 |
|
ax-icn |
⊢ i ∈ ℂ |
| 4 |
3
|
a1i |
⊢ ( 𝐴 ∈ ℂ → i ∈ ℂ ) |
| 5 |
|
negicn |
⊢ - i ∈ ℂ |
| 6 |
5
|
a1i |
⊢ ( 𝐴 ∈ ℂ → - i ∈ ℂ ) |
| 7 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 8 |
3 7
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 9 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 10 |
|
sqcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 11 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 12 |
9 10 11
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 13 |
12
|
sqrtcld |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 14 |
8 13
|
addcld |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ) |
| 15 |
|
asinlem |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) |
| 16 |
14 15
|
logcld |
⊢ ( 𝐴 ∈ ℂ → ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ∈ ℂ ) |
| 17 |
4 6 16
|
mulassd |
⊢ ( 𝐴 ∈ ℂ → ( ( i · - i ) · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( i · ( - i · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) ) |
| 18 |
3 3
|
mulneg2i |
⊢ ( i · - i ) = - ( i · i ) |
| 19 |
|
ixi |
⊢ ( i · i ) = - 1 |
| 20 |
19
|
negeqi |
⊢ - ( i · i ) = - - 1 |
| 21 |
|
negneg1e1 |
⊢ - - 1 = 1 |
| 22 |
18 20 21
|
3eqtri |
⊢ ( i · - i ) = 1 |
| 23 |
22
|
oveq1i |
⊢ ( ( i · - i ) · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( 1 · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 24 |
16
|
mullidd |
⊢ ( 𝐴 ∈ ℂ → ( 1 · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 25 |
23 24
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( ( i · - i ) · ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 26 |
2 17 25
|
3eqtr2d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( arcsin ‘ 𝐴 ) ) = ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 27 |
26
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) = ( exp ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) ) |
| 28 |
|
eflog |
⊢ ( ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ∈ ℂ ∧ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ≠ 0 ) → ( exp ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 29 |
14 15 28
|
syl2anc |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( log ‘ ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 30 |
27 29
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |