| Step |
Hyp |
Ref |
Expression |
| 1 |
|
asincl |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ 𝐴 ) ∈ ℂ ) |
| 2 |
|
sinval |
⊢ ( ( arcsin ‘ 𝐴 ) ∈ ℂ → ( sin ‘ ( arcsin ‘ 𝐴 ) ) = ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / ( 2 · i ) ) ) |
| 3 |
1 2
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( arcsin ‘ 𝐴 ) ) = ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / ( 2 · i ) ) ) |
| 4 |
|
ax-icn |
⊢ i ∈ ℂ |
| 5 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · 𝐴 ) ∈ ℂ ) |
| 6 |
4 5
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · 𝐴 ) ∈ ℂ ) |
| 7 |
6
|
negcld |
⊢ ( 𝐴 ∈ ℂ → - ( i · 𝐴 ) ∈ ℂ ) |
| 8 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 9 |
|
sqcl |
⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
| 10 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( 𝐴 ↑ 2 ) ∈ ℂ ) → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 11 |
8 9 10
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( 1 − ( 𝐴 ↑ 2 ) ) ∈ ℂ ) |
| 12 |
11
|
sqrtcld |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ∈ ℂ ) |
| 13 |
6 7 12
|
pnpcan2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) − ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) = ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) ) |
| 14 |
|
efiasin |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) = ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 15 |
|
mulneg12 |
⊢ ( ( i ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( - i · ( arcsin ‘ 𝐴 ) ) = ( i · - ( arcsin ‘ 𝐴 ) ) ) |
| 16 |
4 1 15
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( arcsin ‘ 𝐴 ) ) = ( i · - ( arcsin ‘ 𝐴 ) ) ) |
| 17 |
|
asinneg |
⊢ ( 𝐴 ∈ ℂ → ( arcsin ‘ - 𝐴 ) = - ( arcsin ‘ 𝐴 ) ) |
| 18 |
17
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( i · ( arcsin ‘ - 𝐴 ) ) = ( i · - ( arcsin ‘ 𝐴 ) ) ) |
| 19 |
16 18
|
eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( arcsin ‘ 𝐴 ) ) = ( i · ( arcsin ‘ - 𝐴 ) ) ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) = ( exp ‘ ( i · ( arcsin ‘ - 𝐴 ) ) ) ) |
| 21 |
|
negcl |
⊢ ( 𝐴 ∈ ℂ → - 𝐴 ∈ ℂ ) |
| 22 |
|
efiasin |
⊢ ( - 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ - 𝐴 ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) |
| 23 |
21 22
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ - 𝐴 ) ) ) = ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) ) |
| 24 |
|
mulneg2 |
⊢ ( ( i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 25 |
4 24
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( i · - 𝐴 ) = - ( i · 𝐴 ) ) |
| 26 |
|
sqneg |
⊢ ( 𝐴 ∈ ℂ → ( - 𝐴 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
| 27 |
26
|
oveq2d |
⊢ ( 𝐴 ∈ ℂ → ( 1 − ( - 𝐴 ↑ 2 ) ) = ( 1 − ( 𝐴 ↑ 2 ) ) ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝐴 ∈ ℂ → ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) = ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) |
| 29 |
25 28
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( i · - 𝐴 ) + ( √ ‘ ( 1 − ( - 𝐴 ↑ 2 ) ) ) ) = ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 30 |
20 23 29
|
3eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) = ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) |
| 31 |
14 30
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) = ( ( ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) − ( - ( i · 𝐴 ) + ( √ ‘ ( 1 − ( 𝐴 ↑ 2 ) ) ) ) ) ) |
| 32 |
6
|
2timesd |
⊢ ( 𝐴 ∈ ℂ → ( 2 · ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) |
| 33 |
|
2cn |
⊢ 2 ∈ ℂ |
| 34 |
|
mulass |
⊢ ( ( 2 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 2 · i ) · 𝐴 ) = ( 2 · ( i · 𝐴 ) ) ) |
| 35 |
33 4 34
|
mp3an12 |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · i ) · 𝐴 ) = ( 2 · ( i · 𝐴 ) ) ) |
| 36 |
6 6
|
subnegd |
⊢ ( 𝐴 ∈ ℂ → ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) = ( ( i · 𝐴 ) + ( i · 𝐴 ) ) ) |
| 37 |
32 35 36
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( 2 · i ) · 𝐴 ) = ( ( i · 𝐴 ) − - ( i · 𝐴 ) ) ) |
| 38 |
13 31 37
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) = ( ( 2 · i ) · 𝐴 ) ) |
| 39 |
|
mulcl |
⊢ ( ( i ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( i · ( arcsin ‘ 𝐴 ) ) ∈ ℂ ) |
| 40 |
4 1 39
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( i · ( arcsin ‘ 𝐴 ) ) ∈ ℂ ) |
| 41 |
|
efcl |
⊢ ( ( i · ( arcsin ‘ 𝐴 ) ) ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 42 |
40 41
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 43 |
|
negicn |
⊢ - i ∈ ℂ |
| 44 |
|
mulcl |
⊢ ( ( - i ∈ ℂ ∧ ( arcsin ‘ 𝐴 ) ∈ ℂ ) → ( - i · ( arcsin ‘ 𝐴 ) ) ∈ ℂ ) |
| 45 |
43 1 44
|
sylancr |
⊢ ( 𝐴 ∈ ℂ → ( - i · ( arcsin ‘ 𝐴 ) ) ∈ ℂ ) |
| 46 |
|
efcl |
⊢ ( ( - i · ( arcsin ‘ 𝐴 ) ) ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 47 |
45 46
|
syl |
⊢ ( 𝐴 ∈ ℂ → ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ∈ ℂ ) |
| 48 |
42 47
|
subcld |
⊢ ( 𝐴 ∈ ℂ → ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) ∈ ℂ ) |
| 49 |
|
id |
⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) |
| 50 |
|
2mulicn |
⊢ ( 2 · i ) ∈ ℂ |
| 51 |
50
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 2 · i ) ∈ ℂ ) |
| 52 |
|
2muline0 |
⊢ ( 2 · i ) ≠ 0 |
| 53 |
52
|
a1i |
⊢ ( 𝐴 ∈ ℂ → ( 2 · i ) ≠ 0 ) |
| 54 |
48 49 51 53
|
divmul2d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / ( 2 · i ) ) = 𝐴 ↔ ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) = ( ( 2 · i ) · 𝐴 ) ) ) |
| 55 |
38 54
|
mpbird |
⊢ ( 𝐴 ∈ ℂ → ( ( ( exp ‘ ( i · ( arcsin ‘ 𝐴 ) ) ) − ( exp ‘ ( - i · ( arcsin ‘ 𝐴 ) ) ) ) / ( 2 · i ) ) = 𝐴 ) |
| 56 |
3 55
|
eqtrd |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ ( arcsin ‘ 𝐴 ) ) = 𝐴 ) |