Metamath Proof Explorer


Theorem eldmressnALTV

Description: Element of the domain of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024)

Ref Expression
Assertion eldmressnALTV
|- ( B e. V -> ( B e. dom ( R |` { A } ) <-> ( B = A /\ A e. dom R ) ) )

Proof

Step Hyp Ref Expression
1 eldmres
 |-  ( B e. V -> ( B e. dom ( R |` { A } ) <-> ( B e. { A } /\ E. y B R y ) ) )
2 elsng
 |-  ( B e. V -> ( B e. { A } <-> B = A ) )
3 eldmg
 |-  ( B e. V -> ( B e. dom R <-> E. y B R y ) )
4 3 bicomd
 |-  ( B e. V -> ( E. y B R y <-> B e. dom R ) )
5 2 4 anbi12d
 |-  ( B e. V -> ( ( B e. { A } /\ E. y B R y ) <-> ( B = A /\ B e. dom R ) ) )
6 1 5 bitrd
 |-  ( B e. V -> ( B e. dom ( R |` { A } ) <-> ( B = A /\ B e. dom R ) ) )
7 eqelb
 |-  ( ( B = A /\ B e. dom R ) <-> ( B = A /\ A e. dom R ) )
8 6 7 bitrdi
 |-  ( B e. V -> ( B e. dom ( R |` { A } ) <-> ( B = A /\ A e. dom R ) ) )