| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eldmres |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝐵 ∈ { 𝐴 } ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) ) |
| 2 |
|
elsng |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ { 𝐴 } ↔ 𝐵 = 𝐴 ) ) |
| 3 |
|
eldmg |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom 𝑅 ↔ ∃ 𝑦 𝐵 𝑅 𝑦 ) ) |
| 4 |
3
|
bicomd |
⊢ ( 𝐵 ∈ 𝑉 → ( ∃ 𝑦 𝐵 𝑅 𝑦 ↔ 𝐵 ∈ dom 𝑅 ) ) |
| 5 |
2 4
|
anbi12d |
⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝐵 ∈ { 𝐴 } ∧ ∃ 𝑦 𝐵 𝑅 𝑦 ) ↔ ( 𝐵 = 𝐴 ∧ 𝐵 ∈ dom 𝑅 ) ) ) |
| 6 |
1 5
|
bitrd |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝐵 = 𝐴 ∧ 𝐵 ∈ dom 𝑅 ) ) ) |
| 7 |
|
eqelb |
⊢ ( ( 𝐵 = 𝐴 ∧ 𝐵 ∈ dom 𝑅 ) ↔ ( 𝐵 = 𝐴 ∧ 𝐴 ∈ dom 𝑅 ) ) |
| 8 |
6 7
|
bitrdi |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐵 ∈ dom ( 𝑅 ↾ { 𝐴 } ) ↔ ( 𝐵 = 𝐴 ∧ 𝐴 ∈ dom 𝑅 ) ) ) |