Step |
Hyp |
Ref |
Expression |
1 |
|
ellspd.n |
|- N = ( LSpan ` M ) |
2 |
|
ellspd.v |
|- B = ( Base ` M ) |
3 |
|
ellspd.k |
|- K = ( Base ` S ) |
4 |
|
ellspd.s |
|- S = ( Scalar ` M ) |
5 |
|
ellspd.z |
|- .0. = ( 0g ` S ) |
6 |
|
ellspd.t |
|- .x. = ( .s ` M ) |
7 |
|
elfilspd.f |
|- ( ph -> F : I --> B ) |
8 |
|
elfilspd.m |
|- ( ph -> M e. LMod ) |
9 |
|
elfilspd.i |
|- ( ph -> I e. Fin ) |
10 |
1 2 3 4 5 6 7 8 9
|
ellspd |
|- ( ph -> ( X e. ( N ` ( F " I ) ) <-> E. f e. ( K ^m I ) ( f finSupp .0. /\ X = ( M gsum ( f oF .x. F ) ) ) ) ) |
11 |
|
elmapi |
|- ( f e. ( K ^m I ) -> f : I --> K ) |
12 |
11
|
adantl |
|- ( ( ph /\ f e. ( K ^m I ) ) -> f : I --> K ) |
13 |
9
|
adantr |
|- ( ( ph /\ f e. ( K ^m I ) ) -> I e. Fin ) |
14 |
5
|
fvexi |
|- .0. e. _V |
15 |
14
|
a1i |
|- ( ( ph /\ f e. ( K ^m I ) ) -> .0. e. _V ) |
16 |
12 13 15
|
fdmfifsupp |
|- ( ( ph /\ f e. ( K ^m I ) ) -> f finSupp .0. ) |
17 |
16
|
biantrurd |
|- ( ( ph /\ f e. ( K ^m I ) ) -> ( X = ( M gsum ( f oF .x. F ) ) <-> ( f finSupp .0. /\ X = ( M gsum ( f oF .x. F ) ) ) ) ) |
18 |
17
|
rexbidva |
|- ( ph -> ( E. f e. ( K ^m I ) X = ( M gsum ( f oF .x. F ) ) <-> E. f e. ( K ^m I ) ( f finSupp .0. /\ X = ( M gsum ( f oF .x. F ) ) ) ) ) |
19 |
10 18
|
bitr4d |
|- ( ph -> ( X e. ( N ` ( F " I ) ) <-> E. f e. ( K ^m I ) X = ( M gsum ( f oF .x. F ) ) ) ) |