| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ellspd.n |
|- N = ( LSpan ` M ) |
| 2 |
|
ellspd.v |
|- B = ( Base ` M ) |
| 3 |
|
ellspd.k |
|- K = ( Base ` S ) |
| 4 |
|
ellspd.s |
|- S = ( Scalar ` M ) |
| 5 |
|
ellspd.z |
|- .0. = ( 0g ` S ) |
| 6 |
|
ellspd.t |
|- .x. = ( .s ` M ) |
| 7 |
|
elfilspd.f |
|- ( ph -> F : I --> B ) |
| 8 |
|
elfilspd.m |
|- ( ph -> M e. LMod ) |
| 9 |
|
elfilspd.i |
|- ( ph -> I e. Fin ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
ellspd |
|- ( ph -> ( X e. ( N ` ( F " I ) ) <-> E. f e. ( K ^m I ) ( f finSupp .0. /\ X = ( M gsum ( f oF .x. F ) ) ) ) ) |
| 11 |
|
elmapi |
|- ( f e. ( K ^m I ) -> f : I --> K ) |
| 12 |
11
|
adantl |
|- ( ( ph /\ f e. ( K ^m I ) ) -> f : I --> K ) |
| 13 |
9
|
adantr |
|- ( ( ph /\ f e. ( K ^m I ) ) -> I e. Fin ) |
| 14 |
5
|
fvexi |
|- .0. e. _V |
| 15 |
14
|
a1i |
|- ( ( ph /\ f e. ( K ^m I ) ) -> .0. e. _V ) |
| 16 |
12 13 15
|
fdmfifsupp |
|- ( ( ph /\ f e. ( K ^m I ) ) -> f finSupp .0. ) |
| 17 |
16
|
biantrurd |
|- ( ( ph /\ f e. ( K ^m I ) ) -> ( X = ( M gsum ( f oF .x. F ) ) <-> ( f finSupp .0. /\ X = ( M gsum ( f oF .x. F ) ) ) ) ) |
| 18 |
17
|
rexbidva |
|- ( ph -> ( E. f e. ( K ^m I ) X = ( M gsum ( f oF .x. F ) ) <-> E. f e. ( K ^m I ) ( f finSupp .0. /\ X = ( M gsum ( f oF .x. F ) ) ) ) ) |
| 19 |
10 18
|
bitr4d |
|- ( ph -> ( X e. ( N ` ( F " I ) ) <-> E. f e. ( K ^m I ) X = ( M gsum ( f oF .x. F ) ) ) ) |