Description: Simplified version of ellspd when the spanning set is finite: all linear combinations are then acceptable. (Contributed by Stefan O'Rear, 7-Feb-2015) (Proof shortened by AV, 21-Jul-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ellspd.n | |
|
ellspd.v | |
||
ellspd.k | |
||
ellspd.s | |
||
ellspd.z | |
||
ellspd.t | |
||
elfilspd.f | |
||
elfilspd.m | |
||
elfilspd.i | |
||
Assertion | elfilspd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspd.n | |
|
2 | ellspd.v | |
|
3 | ellspd.k | |
|
4 | ellspd.s | |
|
5 | ellspd.z | |
|
6 | ellspd.t | |
|
7 | elfilspd.f | |
|
8 | elfilspd.m | |
|
9 | elfilspd.i | |
|
10 | 1 2 3 4 5 6 7 8 9 | ellspd | |
11 | elmapi | |
|
12 | 11 | adantl | |
13 | 9 | adantr | |
14 | 5 | fvexi | |
15 | 14 | a1i | |
16 | 12 13 15 | fdmfifsupp | |
17 | 16 | biantrurd | |
18 | 17 | rexbidva | |
19 | 10 18 | bitr4d | |