Metamath Proof Explorer


Theorem elfilspd

Description: Simplified version of ellspd when the spanning set is finite: all linear combinations are then acceptable. (Contributed by Stefan O'Rear, 7-Feb-2015) (Proof shortened by AV, 21-Jul-2019)

Ref Expression
Hypotheses ellspd.n N=LSpanM
ellspd.v B=BaseM
ellspd.k K=BaseS
ellspd.s S=ScalarM
ellspd.z 0˙=0S
ellspd.t ·˙=M
elfilspd.f φF:IB
elfilspd.m φMLMod
elfilspd.i φIFin
Assertion elfilspd φXNFIfKIX=Mf·˙fF

Proof

Step Hyp Ref Expression
1 ellspd.n N=LSpanM
2 ellspd.v B=BaseM
3 ellspd.k K=BaseS
4 ellspd.s S=ScalarM
5 ellspd.z 0˙=0S
6 ellspd.t ·˙=M
7 elfilspd.f φF:IB
8 elfilspd.m φMLMod
9 elfilspd.i φIFin
10 1 2 3 4 5 6 7 8 9 ellspd φXNFIfKIfinSupp0˙fX=Mf·˙fF
11 elmapi fKIf:IK
12 11 adantl φfKIf:IK
13 9 adantr φfKIIFin
14 5 fvexi 0˙V
15 14 a1i φfKI0˙V
16 12 13 15 fdmfifsupp φfKIfinSupp0˙f
17 16 biantrurd φfKIX=Mf·˙fFfinSupp0˙fX=Mf·˙fF
18 17 rexbidva φfKIX=Mf·˙fFfKIfinSupp0˙fX=Mf·˙fF
19 10 18 bitr4d φXNFIfKIX=Mf·˙fF