Description: Membership in a quotient set by an equivalence class according to .~ . (Contributed by Alexander van der Vekens, 12-Apr-2018) (Revised by AV, 30-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elqsecl | |- ( B e. X -> ( B e. ( W /. .~ ) <-> E. x e. W B = { y | x .~ y } ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elqsg | |- ( B e. X -> ( B e. ( W /. .~ ) <-> E. x e. W B = [ x ] .~ ) ) | |
| 2 | vex | |- x e. _V | |
| 3 | dfec2 |  |-  ( x e. _V -> [ x ] .~ = { y | x .~ y } ) | |
| 4 | 2 3 | mp1i |  |-  ( B e. X -> [ x ] .~ = { y | x .~ y } ) | 
| 5 | 4 | eqeq2d |  |-  ( B e. X -> ( B = [ x ] .~ <-> B = { y | x .~ y } ) ) | 
| 6 | 5 | rexbidv |  |-  ( B e. X -> ( E. x e. W B = [ x ] .~ <-> E. x e. W B = { y | x .~ y } ) ) | 
| 7 | 1 6 | bitrd |  |-  ( B e. X -> ( B e. ( W /. .~ ) <-> E. x e. W B = { y | x .~ y } ) ) |