Description: Membership in a quotient set by an equivalence class according to .~ . (Contributed by Alexander van der Vekens, 12-Apr-2018) (Revised by AV, 30-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | elqsecl | |- ( B e. X -> ( B e. ( W /. .~ ) <-> E. x e. W B = { y | x .~ y } ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsg | |- ( B e. X -> ( B e. ( W /. .~ ) <-> E. x e. W B = [ x ] .~ ) ) |
|
2 | vex | |- x e. _V |
|
3 | dfec2 | |- ( x e. _V -> [ x ] .~ = { y | x .~ y } ) |
|
4 | 2 3 | mp1i | |- ( B e. X -> [ x ] .~ = { y | x .~ y } ) |
5 | 4 | eqeq2d | |- ( B e. X -> ( B = [ x ] .~ <-> B = { y | x .~ y } ) ) |
6 | 5 | rexbidv | |- ( B e. X -> ( E. x e. W B = [ x ] .~ <-> E. x e. W B = { y | x .~ y } ) ) |
7 | 1 6 | bitrd | |- ( B e. X -> ( B e. ( W /. .~ ) <-> E. x e. W B = { y | x .~ y } ) ) |