Metamath Proof Explorer


Theorem elqsecl

Description: Membership in a quotient set by an equivalence class according to .~ . (Contributed by Alexander van der Vekens, 12-Apr-2018) (Revised by AV, 30-Apr-2021)

Ref Expression
Assertion elqsecl
|- ( B e. X -> ( B e. ( W /. .~ ) <-> E. x e. W B = { y | x .~ y } ) )

Proof

Step Hyp Ref Expression
1 elqsg
 |-  ( B e. X -> ( B e. ( W /. .~ ) <-> E. x e. W B = [ x ] .~ ) )
2 vex
 |-  x e. _V
3 dfec2
 |-  ( x e. _V -> [ x ] .~ = { y | x .~ y } )
4 2 3 mp1i
 |-  ( B e. X -> [ x ] .~ = { y | x .~ y } )
5 4 eqeq2d
 |-  ( B e. X -> ( B = [ x ] .~ <-> B = { y | x .~ y } ) )
6 5 rexbidv
 |-  ( B e. X -> ( E. x e. W B = [ x ] .~ <-> E. x e. W B = { y | x .~ y } ) )
7 1 6 bitrd
 |-  ( B e. X -> ( B e. ( W /. .~ ) <-> E. x e. W B = { y | x .~ y } ) )