Metamath Proof Explorer


Theorem elrrx2linest2

Description: The line passing through the two different points X and Y in a real Euclidean space of dimension 2 in another "standard form" (usually with ( p1 ) = x and ( p2 ) = y ). (Contributed by AV, 23-Feb-2023)

Ref Expression
Hypotheses rrx2linest2.i
|- I = { 1 , 2 }
rrx2linest2.e
|- E = ( RR^ ` I )
rrx2linest2.p
|- P = ( RR ^m I )
rrx2linest2.l
|- L = ( LineM ` E )
rrx2linest2.a
|- A = ( ( X ` 2 ) - ( Y ` 2 ) )
rrx2linest2.b
|- B = ( ( Y ` 1 ) - ( X ` 1 ) )
rrx2linest2.c
|- C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) )
Assertion elrrx2linest2
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( G e. ( X L Y ) <-> ( G e. P /\ ( ( A x. ( G ` 1 ) ) + ( B x. ( G ` 2 ) ) ) = C ) ) )

Proof

Step Hyp Ref Expression
1 rrx2linest2.i
 |-  I = { 1 , 2 }
2 rrx2linest2.e
 |-  E = ( RR^ ` I )
3 rrx2linest2.p
 |-  P = ( RR ^m I )
4 rrx2linest2.l
 |-  L = ( LineM ` E )
5 rrx2linest2.a
 |-  A = ( ( X ` 2 ) - ( Y ` 2 ) )
6 rrx2linest2.b
 |-  B = ( ( Y ` 1 ) - ( X ` 1 ) )
7 rrx2linest2.c
 |-  C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) )
8 1 2 3 4 5 6 7 rrx2linest2
 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } )
9 8 eleq2d
 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( G e. ( X L Y ) <-> G e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) )
10 fveq1
 |-  ( p = G -> ( p ` 1 ) = ( G ` 1 ) )
11 10 oveq2d
 |-  ( p = G -> ( A x. ( p ` 1 ) ) = ( A x. ( G ` 1 ) ) )
12 fveq1
 |-  ( p = G -> ( p ` 2 ) = ( G ` 2 ) )
13 12 oveq2d
 |-  ( p = G -> ( B x. ( p ` 2 ) ) = ( B x. ( G ` 2 ) ) )
14 11 13 oveq12d
 |-  ( p = G -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( A x. ( G ` 1 ) ) + ( B x. ( G ` 2 ) ) ) )
15 14 eqeq1d
 |-  ( p = G -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. ( G ` 1 ) ) + ( B x. ( G ` 2 ) ) ) = C ) )
16 15 elrab
 |-  ( G e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } <-> ( G e. P /\ ( ( A x. ( G ` 1 ) ) + ( B x. ( G ` 2 ) ) ) = C ) )
17 9 16 bitrdi
 |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( G e. ( X L Y ) <-> ( G e. P /\ ( ( A x. ( G ` 1 ) ) + ( B x. ( G ` 2 ) ) ) = C ) ) )