Step |
Hyp |
Ref |
Expression |
1 |
|
rrx2linest2.i |
|- I = { 1 , 2 } |
2 |
|
rrx2linest2.e |
|- E = ( RR^ ` I ) |
3 |
|
rrx2linest2.p |
|- P = ( RR ^m I ) |
4 |
|
rrx2linest2.l |
|- L = ( LineM ` E ) |
5 |
|
rrx2linest2.a |
|- A = ( ( X ` 2 ) - ( Y ` 2 ) ) |
6 |
|
rrx2linest2.b |
|- B = ( ( Y ` 1 ) - ( X ` 1 ) ) |
7 |
|
rrx2linest2.c |
|- C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) |
8 |
1 2 3 4 5 6 7
|
rrx2linest2 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) |
9 |
8
|
eleq2d |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( G e. ( X L Y ) <-> G e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) ) |
10 |
|
fveq1 |
|- ( p = G -> ( p ` 1 ) = ( G ` 1 ) ) |
11 |
10
|
oveq2d |
|- ( p = G -> ( A x. ( p ` 1 ) ) = ( A x. ( G ` 1 ) ) ) |
12 |
|
fveq1 |
|- ( p = G -> ( p ` 2 ) = ( G ` 2 ) ) |
13 |
12
|
oveq2d |
|- ( p = G -> ( B x. ( p ` 2 ) ) = ( B x. ( G ` 2 ) ) ) |
14 |
11 13
|
oveq12d |
|- ( p = G -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( A x. ( G ` 1 ) ) + ( B x. ( G ` 2 ) ) ) ) |
15 |
14
|
eqeq1d |
|- ( p = G -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. ( G ` 1 ) ) + ( B x. ( G ` 2 ) ) ) = C ) ) |
16 |
15
|
elrab |
|- ( G e. { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } <-> ( G e. P /\ ( ( A x. ( G ` 1 ) ) + ( B x. ( G ` 2 ) ) ) = C ) ) |
17 |
9 16
|
bitrdi |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( G e. ( X L Y ) <-> ( G e. P /\ ( ( A x. ( G ` 1 ) ) + ( B x. ( G ` 2 ) ) ) = C ) ) ) |