Step |
Hyp |
Ref |
Expression |
1 |
|
rrx2linest2.i |
|- I = { 1 , 2 } |
2 |
|
rrx2linest2.e |
|- E = ( RR^ ` I ) |
3 |
|
rrx2linest2.p |
|- P = ( RR ^m I ) |
4 |
|
rrx2linest2.l |
|- L = ( LineM ` E ) |
5 |
|
rrx2linest2.a |
|- A = ( ( X ` 2 ) - ( Y ` 2 ) ) |
6 |
|
rrx2linest2.b |
|- B = ( ( Y ` 1 ) - ( X ` 1 ) ) |
7 |
|
rrx2linest2.c |
|- C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) |
8 |
|
eqid |
|- ( ( Y ` 2 ) - ( X ` 2 ) ) = ( ( Y ` 2 ) - ( X ` 2 ) ) |
9 |
1 2 3 4 6 8 7
|
rrx2linest |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) } ) |
10 |
|
eqcom |
|- ( ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) <-> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) = ( B x. ( p ` 2 ) ) ) |
11 |
1 3
|
rrx2pyel |
|- ( Y e. P -> ( Y ` 2 ) e. RR ) |
12 |
11
|
3ad2ant2 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Y ` 2 ) e. RR ) |
13 |
1 3
|
rrx2pyel |
|- ( X e. P -> ( X ` 2 ) e. RR ) |
14 |
13
|
3ad2ant1 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X ` 2 ) e. RR ) |
15 |
12 14
|
resubcld |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. RR ) |
16 |
15
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. RR ) |
17 |
1 3
|
rrx2pxel |
|- ( p e. P -> ( p ` 1 ) e. RR ) |
18 |
17
|
adantl |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( p ` 1 ) e. RR ) |
19 |
16 18
|
remulcld |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) e. RR ) |
20 |
19
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) e. CC ) |
21 |
1 3
|
rrx2pxel |
|- ( Y e. P -> ( Y ` 1 ) e. RR ) |
22 |
21
|
3ad2ant2 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Y ` 1 ) e. RR ) |
23 |
14 22
|
remulcld |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( X ` 2 ) x. ( Y ` 1 ) ) e. RR ) |
24 |
1 3
|
rrx2pxel |
|- ( X e. P -> ( X ` 1 ) e. RR ) |
25 |
24
|
3ad2ant1 |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X ` 1 ) e. RR ) |
26 |
25 12
|
remulcld |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( X ` 1 ) x. ( Y ` 2 ) ) e. RR ) |
27 |
23 26
|
resubcld |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) e. RR ) |
28 |
7 27
|
eqeltrid |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> C e. RR ) |
29 |
28
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> C e. RR ) |
30 |
29
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> C e. CC ) |
31 |
22 25
|
resubcld |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) e. RR ) |
32 |
6 31
|
eqeltrid |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> B e. RR ) |
33 |
32
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> B e. RR ) |
34 |
1 3
|
rrx2pyel |
|- ( p e. P -> ( p ` 2 ) e. RR ) |
35 |
34
|
adantl |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( p ` 2 ) e. RR ) |
36 |
33 35
|
remulcld |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. RR ) |
37 |
36
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. CC ) |
38 |
20 30 37
|
addrsub |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) = ( B x. ( p ` 2 ) ) <-> C = ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) ) ) |
39 |
|
eqcom |
|- ( C = ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) <-> ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = C ) |
40 |
14 12
|
resubcld |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( X ` 2 ) - ( Y ` 2 ) ) e. RR ) |
41 |
5 40
|
eqeltrid |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> A e. RR ) |
42 |
41
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> A e. RR ) |
43 |
42 18
|
remulcld |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) e. RR ) |
44 |
43
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) e. CC ) |
45 |
44 37
|
addcomd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( B x. ( p ` 2 ) ) + ( A x. ( p ` 1 ) ) ) ) |
46 |
12
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( Y ` 2 ) e. RR ) |
47 |
46
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( Y ` 2 ) e. CC ) |
48 |
14
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( X ` 2 ) e. RR ) |
49 |
48
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( X ` 2 ) e. CC ) |
50 |
47 49
|
negsubdi2d |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> -u ( ( Y ` 2 ) - ( X ` 2 ) ) = ( ( X ` 2 ) - ( Y ` 2 ) ) ) |
51 |
5 50
|
eqtr4id |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> A = -u ( ( Y ` 2 ) - ( X ` 2 ) ) ) |
52 |
51
|
oveq1d |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) = ( -u ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) |
53 |
16
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) |
54 |
18
|
recnd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( p ` 1 ) e. CC ) |
55 |
53 54
|
mulneg1d |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( -u ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = -u ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) |
56 |
52 55
|
eqtrd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) = -u ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) |
57 |
56
|
oveq2d |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) + ( A x. ( p ` 1 ) ) ) = ( ( B x. ( p ` 2 ) ) + -u ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) ) |
58 |
37 20
|
negsubd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) + -u ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) ) |
59 |
45 57 58
|
3eqtrd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) ) |
60 |
59
|
eqeq1d |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) = C ) ) |
61 |
39 60
|
bitr4id |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( C = ( ( B x. ( p ` 2 ) ) - ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) <-> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C ) ) |
62 |
38 61
|
bitrd |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) = ( B x. ( p ` 2 ) ) <-> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C ) ) |
63 |
10 62
|
syl5bb |
|- ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) <-> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C ) ) |
64 |
63
|
rabbidva |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> { p e. P | ( B x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + C ) } = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) |
65 |
9 64
|
eqtrd |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) |