| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2line.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | rrx2line.e |  |-  E = ( RR^ ` I ) | 
						
							| 3 |  | rrx2line.b |  |-  P = ( RR ^m I ) | 
						
							| 4 |  | rrx2line.l |  |-  L = ( LineM ` E ) | 
						
							| 5 |  | rrx2linest.a |  |-  A = ( ( Y ` 1 ) - ( X ` 1 ) ) | 
						
							| 6 |  | rrx2linest.b |  |-  B = ( ( Y ` 2 ) - ( X ` 2 ) ) | 
						
							| 7 |  | rrx2linest.c |  |-  C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) | 
						
							| 8 |  | simpl1 |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> X e. P ) | 
						
							| 9 |  | simpl2 |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> Y e. P ) | 
						
							| 10 |  | simpr |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( X ` 1 ) = ( Y ` 1 ) ) | 
						
							| 11 |  | simpr |  |-  ( ( ( X e. P /\ Y e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( X ` 1 ) = ( Y ` 1 ) ) | 
						
							| 12 | 11 | anim1i |  |-  ( ( ( ( X e. P /\ Y e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) /\ ( X ` 2 ) = ( Y ` 2 ) ) -> ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) = ( Y ` 2 ) ) ) | 
						
							| 13 | 1 | raleqi |  |-  ( A. i e. I ( X ` i ) = ( Y ` i ) <-> A. i e. { 1 , 2 } ( X ` i ) = ( Y ` i ) ) | 
						
							| 14 |  | 1ex |  |-  1 e. _V | 
						
							| 15 |  | 2ex |  |-  2 e. _V | 
						
							| 16 |  | fveq2 |  |-  ( i = 1 -> ( X ` i ) = ( X ` 1 ) ) | 
						
							| 17 |  | fveq2 |  |-  ( i = 1 -> ( Y ` i ) = ( Y ` 1 ) ) | 
						
							| 18 | 16 17 | eqeq12d |  |-  ( i = 1 -> ( ( X ` i ) = ( Y ` i ) <-> ( X ` 1 ) = ( Y ` 1 ) ) ) | 
						
							| 19 |  | fveq2 |  |-  ( i = 2 -> ( X ` i ) = ( X ` 2 ) ) | 
						
							| 20 |  | fveq2 |  |-  ( i = 2 -> ( Y ` i ) = ( Y ` 2 ) ) | 
						
							| 21 | 19 20 | eqeq12d |  |-  ( i = 2 -> ( ( X ` i ) = ( Y ` i ) <-> ( X ` 2 ) = ( Y ` 2 ) ) ) | 
						
							| 22 | 14 15 18 21 | ralpr |  |-  ( A. i e. { 1 , 2 } ( X ` i ) = ( Y ` i ) <-> ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) = ( Y ` 2 ) ) ) | 
						
							| 23 | 13 22 | bitri |  |-  ( A. i e. I ( X ` i ) = ( Y ` i ) <-> ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) = ( Y ` 2 ) ) ) | 
						
							| 24 | 12 23 | sylibr |  |-  ( ( ( ( X e. P /\ Y e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) /\ ( X ` 2 ) = ( Y ` 2 ) ) -> A. i e. I ( X ` i ) = ( Y ` i ) ) | 
						
							| 25 |  | elmapfn |  |-  ( X e. ( RR ^m I ) -> X Fn I ) | 
						
							| 26 | 25 3 | eleq2s |  |-  ( X e. P -> X Fn I ) | 
						
							| 27 |  | elmapfn |  |-  ( Y e. ( RR ^m I ) -> Y Fn I ) | 
						
							| 28 | 27 3 | eleq2s |  |-  ( Y e. P -> Y Fn I ) | 
						
							| 29 | 26 28 | anim12i |  |-  ( ( X e. P /\ Y e. P ) -> ( X Fn I /\ Y Fn I ) ) | 
						
							| 30 | 29 | ad2antrr |  |-  ( ( ( ( X e. P /\ Y e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) /\ ( X ` 2 ) = ( Y ` 2 ) ) -> ( X Fn I /\ Y Fn I ) ) | 
						
							| 31 |  | eqfnfv |  |-  ( ( X Fn I /\ Y Fn I ) -> ( X = Y <-> A. i e. I ( X ` i ) = ( Y ` i ) ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( ( ( X e. P /\ Y e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) /\ ( X ` 2 ) = ( Y ` 2 ) ) -> ( X = Y <-> A. i e. I ( X ` i ) = ( Y ` i ) ) ) | 
						
							| 33 | 24 32 | mpbird |  |-  ( ( ( ( X e. P /\ Y e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) /\ ( X ` 2 ) = ( Y ` 2 ) ) -> X = Y ) | 
						
							| 34 | 33 | ex |  |-  ( ( ( X e. P /\ Y e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( ( X ` 2 ) = ( Y ` 2 ) -> X = Y ) ) | 
						
							| 35 | 34 | necon3d |  |-  ( ( ( X e. P /\ Y e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( X =/= Y -> ( X ` 2 ) =/= ( Y ` 2 ) ) ) | 
						
							| 36 | 35 | ex |  |-  ( ( X e. P /\ Y e. P ) -> ( ( X ` 1 ) = ( Y ` 1 ) -> ( X =/= Y -> ( X ` 2 ) =/= ( Y ` 2 ) ) ) ) | 
						
							| 37 | 36 | com23 |  |-  ( ( X e. P /\ Y e. P ) -> ( X =/= Y -> ( ( X ` 1 ) = ( Y ` 1 ) -> ( X ` 2 ) =/= ( Y ` 2 ) ) ) ) | 
						
							| 38 | 37 | 3impia |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( X ` 1 ) = ( Y ` 1 ) -> ( X ` 2 ) =/= ( Y ` 2 ) ) ) | 
						
							| 39 | 38 | imp |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( X ` 2 ) =/= ( Y ` 2 ) ) | 
						
							| 40 | 1 2 3 4 | rrx2vlinest |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X L Y ) = { p e. P | ( p ` 1 ) = ( X ` 1 ) } ) | 
						
							| 41 | 8 9 10 39 40 | syl112anc |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( X L Y ) = { p e. P | ( p ` 1 ) = ( X ` 1 ) } ) | 
						
							| 42 |  | ancom |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( X ` 1 ) = ( Y ` 1 ) ) <-> ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) ) | 
						
							| 43 |  | simplr |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( X e. P /\ Y e. P /\ X =/= Y ) ) | 
						
							| 44 |  | simpr |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> p e. P ) | 
						
							| 45 |  | simpll |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( X ` 1 ) = ( Y ` 1 ) ) | 
						
							| 46 | 5 | oveq1i |  |-  ( A x. ( p ` 2 ) ) = ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) | 
						
							| 47 | 46 | a1i |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( A x. ( p ` 2 ) ) = ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) ) | 
						
							| 48 |  | oveq2 |  |-  ( ( X ` 1 ) = ( Y ` 1 ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) = ( ( Y ` 1 ) - ( Y ` 1 ) ) ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) = ( ( Y ` 1 ) - ( Y ` 1 ) ) ) | 
						
							| 50 | 1 3 | rrx2pxel |  |-  ( Y e. P -> ( Y ` 1 ) e. RR ) | 
						
							| 51 | 50 | recnd |  |-  ( Y e. P -> ( Y ` 1 ) e. CC ) | 
						
							| 52 | 51 | 3ad2ant2 |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Y ` 1 ) e. CC ) | 
						
							| 53 | 52 | ad2antrr |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( Y ` 1 ) e. CC ) | 
						
							| 54 | 53 | subidd |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( ( Y ` 1 ) - ( Y ` 1 ) ) = 0 ) | 
						
							| 55 | 49 54 | eqtrd |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) = 0 ) | 
						
							| 56 | 55 | oveq1d |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( 0 x. ( p ` 2 ) ) ) | 
						
							| 57 | 1 3 | rrx2pyel |  |-  ( p e. P -> ( p ` 2 ) e. RR ) | 
						
							| 58 | 57 | recnd |  |-  ( p e. P -> ( p ` 2 ) e. CC ) | 
						
							| 59 | 58 | ad2antlr |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( p ` 2 ) e. CC ) | 
						
							| 60 | 59 | mul02d |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( 0 x. ( p ` 2 ) ) = 0 ) | 
						
							| 61 | 47 56 60 | 3eqtrd |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( A x. ( p ` 2 ) ) = 0 ) | 
						
							| 62 | 6 | oveq1i |  |-  ( B x. ( p ` 1 ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) | 
						
							| 63 | 62 | a1i |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( B x. ( p ` 1 ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) ) | 
						
							| 64 |  | oveq1 |  |-  ( ( X ` 1 ) = ( Y ` 1 ) -> ( ( X ` 1 ) x. ( Y ` 2 ) ) = ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) | 
						
							| 65 | 64 | oveq2d |  |-  ( ( X ` 1 ) = ( Y ` 1 ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) ) | 
						
							| 66 | 7 65 | eqtrid |  |-  ( ( X ` 1 ) = ( Y ` 1 ) -> C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> C = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) ) | 
						
							| 68 | 63 67 | oveq12d |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( ( B x. ( p ` 1 ) ) + C ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) ) ) | 
						
							| 69 | 61 68 | eqeq12d |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) <-> 0 = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) ) ) ) | 
						
							| 70 | 43 44 45 69 | syl21anc |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) <-> 0 = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) ) ) ) | 
						
							| 71 | 1 3 | rrx2pyel |  |-  ( Y e. P -> ( Y ` 2 ) e. RR ) | 
						
							| 72 | 71 | recnd |  |-  ( Y e. P -> ( Y ` 2 ) e. CC ) | 
						
							| 73 | 72 | 3ad2ant2 |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Y ` 2 ) e. CC ) | 
						
							| 74 | 52 73 | mulcomd |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( Y ` 1 ) x. ( Y ` 2 ) ) = ( ( Y ` 2 ) x. ( Y ` 1 ) ) ) | 
						
							| 75 | 74 | oveq2d |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 2 ) x. ( Y ` 1 ) ) ) ) | 
						
							| 76 | 1 3 | rrx2pyel |  |-  ( X e. P -> ( X ` 2 ) e. RR ) | 
						
							| 77 | 76 | recnd |  |-  ( X e. P -> ( X ` 2 ) e. CC ) | 
						
							| 78 | 77 | 3ad2ant1 |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X ` 2 ) e. CC ) | 
						
							| 79 | 78 73 52 | subdird |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) = ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 2 ) x. ( Y ` 1 ) ) ) ) | 
						
							| 80 | 75 79 | eqtr4d |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) = ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) | 
						
							| 81 | 80 | ad2antlr |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) = ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) | 
						
							| 82 | 81 | oveq2d |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) ) | 
						
							| 83 | 82 | eqeq2d |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( 0 = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) ) <-> 0 = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) ) ) | 
						
							| 84 |  | eqcom |  |-  ( 0 = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) <-> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) = 0 ) | 
						
							| 85 | 84 | a1i |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( 0 = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) <-> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) = 0 ) ) | 
						
							| 86 | 73 | ad2antlr |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( Y ` 2 ) e. CC ) | 
						
							| 87 | 78 | ad2antlr |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( X ` 2 ) e. CC ) | 
						
							| 88 | 86 87 | subcld |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) | 
						
							| 89 | 1 3 | rrx2pxel |  |-  ( p e. P -> ( p ` 1 ) e. RR ) | 
						
							| 90 | 89 | recnd |  |-  ( p e. P -> ( p ` 1 ) e. CC ) | 
						
							| 91 | 90 | adantl |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( p ` 1 ) e. CC ) | 
						
							| 92 | 88 91 | mulcld |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) e. CC ) | 
						
							| 93 | 87 86 | subcld |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( X ` 2 ) - ( Y ` 2 ) ) e. CC ) | 
						
							| 94 | 52 | ad2antlr |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( Y ` 1 ) e. CC ) | 
						
							| 95 | 93 94 | mulcld |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) e. CC ) | 
						
							| 96 |  | addeq0 |  |-  ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) e. CC /\ ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) e. CC ) -> ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) = 0 <-> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = -u ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) ) | 
						
							| 97 | 92 95 96 | syl2anc |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) = 0 <-> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = -u ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) ) | 
						
							| 98 | 93 94 | mulneg1d |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( -u ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) = -u ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) | 
						
							| 99 | 87 86 | negsubdi2d |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> -u ( ( X ` 2 ) - ( Y ` 2 ) ) = ( ( Y ` 2 ) - ( X ` 2 ) ) ) | 
						
							| 100 | 99 | oveq1d |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( -u ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( Y ` 1 ) ) ) | 
						
							| 101 | 98 100 | eqtr3d |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> -u ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( Y ` 1 ) ) ) | 
						
							| 102 | 101 | eqeq2d |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = -u ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) <-> ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( Y ` 1 ) ) ) ) | 
						
							| 103 |  | necom |  |-  ( ( X ` 2 ) =/= ( Y ` 2 ) <-> ( Y ` 2 ) =/= ( X ` 2 ) ) | 
						
							| 104 | 39 42 103 | 3imtr3i |  |-  ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) -> ( Y ` 2 ) =/= ( X ` 2 ) ) | 
						
							| 105 | 104 | adantr |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( Y ` 2 ) =/= ( X ` 2 ) ) | 
						
							| 106 | 86 87 105 | subne0d |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) =/= 0 ) | 
						
							| 107 | 91 94 88 106 | mulcand |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( Y ` 1 ) ) <-> ( p ` 1 ) = ( Y ` 1 ) ) ) | 
						
							| 108 | 102 107 | bitrd |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = -u ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) <-> ( p ` 1 ) = ( Y ` 1 ) ) ) | 
						
							| 109 | 85 97 108 | 3bitrd |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( 0 = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) - ( Y ` 2 ) ) x. ( Y ` 1 ) ) ) <-> ( p ` 1 ) = ( Y ` 1 ) ) ) | 
						
							| 110 | 83 109 | bitrd |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( 0 = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( Y ` 1 ) x. ( Y ` 2 ) ) ) ) <-> ( p ` 1 ) = ( Y ` 1 ) ) ) | 
						
							| 111 |  | simpl |  |-  ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) -> ( X ` 1 ) = ( Y ` 1 ) ) | 
						
							| 112 | 111 | eqcomd |  |-  ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) -> ( Y ` 1 ) = ( X ` 1 ) ) | 
						
							| 113 | 112 | adantr |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( Y ` 1 ) = ( X ` 1 ) ) | 
						
							| 114 | 113 | eqeq2d |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( p ` 1 ) = ( Y ` 1 ) <-> ( p ` 1 ) = ( X ` 1 ) ) ) | 
						
							| 115 | 70 110 114 | 3bitrrd |  |-  ( ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) /\ p e. P ) -> ( ( p ` 1 ) = ( X ` 1 ) <-> ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) ) ) | 
						
							| 116 | 115 | rabbidva |  |-  ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) -> { p e. P | ( p ` 1 ) = ( X ` 1 ) } = { p e. P | ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) } ) | 
						
							| 117 | 42 116 | sylbi |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> { p e. P | ( p ` 1 ) = ( X ` 1 ) } = { p e. P | ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) } ) | 
						
							| 118 | 41 117 | eqtrd |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ ( X ` 1 ) = ( Y ` 1 ) ) -> ( X L Y ) = { p e. P | ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) } ) | 
						
							| 119 | 1 2 3 4 | rrx2line |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } ) | 
						
							| 120 | 119 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ -. ( X ` 1 ) = ( Y ` 1 ) ) -> ( X L Y ) = { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } ) | 
						
							| 121 |  | df-ne |  |-  ( ( X ` 1 ) =/= ( Y ` 1 ) <-> -. ( X ` 1 ) = ( Y ` 1 ) ) | 
						
							| 122 | 89 | ad2antlr |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( p ` 1 ) e. RR ) | 
						
							| 123 | 1 3 | rrx2pxel |  |-  ( X e. P -> ( X ` 1 ) e. RR ) | 
						
							| 124 | 123 | 3ad2ant1 |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X ` 1 ) e. RR ) | 
						
							| 125 | 124 | ad2antrr |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X ` 1 ) e. RR ) | 
						
							| 126 | 50 | 3ad2ant2 |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Y ` 1 ) e. RR ) | 
						
							| 127 | 126 | ad2antrr |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( Y ` 1 ) e. RR ) | 
						
							| 128 |  | simpr |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X ` 1 ) =/= ( Y ` 1 ) ) | 
						
							| 129 | 57 | ad2antlr |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( p ` 2 ) e. RR ) | 
						
							| 130 | 76 | 3ad2ant1 |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X ` 2 ) e. RR ) | 
						
							| 131 | 130 | ad2antrr |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X ` 2 ) e. RR ) | 
						
							| 132 | 71 | 3ad2ant2 |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( Y ` 2 ) e. RR ) | 
						
							| 133 | 132 | ad2antrr |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( Y ` 2 ) e. RR ) | 
						
							| 134 | 122 125 127 128 129 131 133 | affinecomb2 |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) ) ) | 
						
							| 135 | 5 | eqcomi |  |-  ( ( Y ` 1 ) - ( X ` 1 ) ) = A | 
						
							| 136 | 135 | oveq1i |  |-  ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( A x. ( p ` 2 ) ) | 
						
							| 137 | 6 | eqcomi |  |-  ( ( Y ` 2 ) - ( X ` 2 ) ) = B | 
						
							| 138 | 137 | oveq1i |  |-  ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) = ( B x. ( p ` 1 ) ) | 
						
							| 139 | 7 | eqcomi |  |-  ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) = C | 
						
							| 140 | 138 139 | oveq12i |  |-  ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) = ( ( B x. ( p ` 1 ) ) + C ) | 
						
							| 141 | 136 140 | eqeq12i |  |-  ( ( ( ( Y ` 1 ) - ( X ` 1 ) ) x. ( p ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( p ` 1 ) ) + ( ( ( X ` 2 ) x. ( Y ` 1 ) ) - ( ( X ` 1 ) x. ( Y ` 2 ) ) ) ) <-> ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) ) | 
						
							| 142 | 134 141 | bitrdi |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) ) ) | 
						
							| 143 | 142 | expcom |  |-  ( ( X ` 1 ) =/= ( Y ` 1 ) -> ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) ) ) ) | 
						
							| 144 | 121 143 | sylbir |  |-  ( -. ( X ` 1 ) = ( Y ` 1 ) -> ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) ) ) ) | 
						
							| 145 | 144 | expd |  |-  ( -. ( X ` 1 ) = ( Y ` 1 ) -> ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( p e. P -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) ) ) ) ) | 
						
							| 146 | 145 | impcom |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ -. ( X ` 1 ) = ( Y ` 1 ) ) -> ( p e. P -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) ) ) ) | 
						
							| 147 | 146 | imp |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ -. ( X ` 1 ) = ( Y ` 1 ) ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) ) ) | 
						
							| 148 | 147 | rabbidva |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ -. ( X ` 1 ) = ( Y ` 1 ) ) -> { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } = { p e. P | ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) } ) | 
						
							| 149 | 120 148 | eqtrd |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ -. ( X ` 1 ) = ( Y ` 1 ) ) -> ( X L Y ) = { p e. P | ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) } ) | 
						
							| 150 | 118 149 | pm2.61dan |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | ( A x. ( p ` 2 ) ) = ( ( B x. ( p ` 1 ) ) + C ) } ) |