Step |
Hyp |
Ref |
Expression |
1 |
|
rrx2line.i |
|- I = { 1 , 2 } |
2 |
|
rrx2line.e |
|- E = ( RR^ ` I ) |
3 |
|
rrx2line.b |
|- P = ( RR ^m I ) |
4 |
|
rrx2line.l |
|- L = ( LineM ` E ) |
5 |
|
rrx2linesl.s |
|- S = ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) |
6 |
|
fveq1 |
|- ( X = Y -> ( X ` 1 ) = ( Y ` 1 ) ) |
7 |
6
|
necon3i |
|- ( ( X ` 1 ) =/= ( Y ` 1 ) -> X =/= Y ) |
8 |
1 2 3 4
|
rrx2line |
|- ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } ) |
9 |
7 8
|
syl3an3 |
|- ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X L Y ) = { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } ) |
10 |
|
reex |
|- RR e. _V |
11 |
|
prex |
|- { 1 , 2 } e. _V |
12 |
1 11
|
eqeltri |
|- I e. _V |
13 |
10 12
|
elmap |
|- ( p e. ( RR ^m I ) <-> p : I --> RR ) |
14 |
|
id |
|- ( p : I --> RR -> p : I --> RR ) |
15 |
|
1ex |
|- 1 e. _V |
16 |
15
|
prid1 |
|- 1 e. { 1 , 2 } |
17 |
16 1
|
eleqtrri |
|- 1 e. I |
18 |
17
|
a1i |
|- ( p : I --> RR -> 1 e. I ) |
19 |
14 18
|
ffvelrnd |
|- ( p : I --> RR -> ( p ` 1 ) e. RR ) |
20 |
13 19
|
sylbi |
|- ( p e. ( RR ^m I ) -> ( p ` 1 ) e. RR ) |
21 |
20 3
|
eleq2s |
|- ( p e. P -> ( p ` 1 ) e. RR ) |
22 |
21
|
adantl |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( p ` 1 ) e. RR ) |
23 |
10 12
|
elmap |
|- ( X e. ( RR ^m I ) <-> X : I --> RR ) |
24 |
|
id |
|- ( X : I --> RR -> X : I --> RR ) |
25 |
17
|
a1i |
|- ( X : I --> RR -> 1 e. I ) |
26 |
24 25
|
ffvelrnd |
|- ( X : I --> RR -> ( X ` 1 ) e. RR ) |
27 |
23 26
|
sylbi |
|- ( X e. ( RR ^m I ) -> ( X ` 1 ) e. RR ) |
28 |
27 3
|
eleq2s |
|- ( X e. P -> ( X ` 1 ) e. RR ) |
29 |
28
|
3ad2ant1 |
|- ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X ` 1 ) e. RR ) |
30 |
29
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( X ` 1 ) e. RR ) |
31 |
10 12
|
elmap |
|- ( Y e. ( RR ^m I ) <-> Y : I --> RR ) |
32 |
|
id |
|- ( Y : I --> RR -> Y : I --> RR ) |
33 |
17
|
a1i |
|- ( Y : I --> RR -> 1 e. I ) |
34 |
32 33
|
ffvelrnd |
|- ( Y : I --> RR -> ( Y ` 1 ) e. RR ) |
35 |
31 34
|
sylbi |
|- ( Y e. ( RR ^m I ) -> ( Y ` 1 ) e. RR ) |
36 |
35 3
|
eleq2s |
|- ( Y e. P -> ( Y ` 1 ) e. RR ) |
37 |
36
|
3ad2ant2 |
|- ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( Y ` 1 ) e. RR ) |
38 |
37
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( Y ` 1 ) e. RR ) |
39 |
|
simpl3 |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( X ` 1 ) =/= ( Y ` 1 ) ) |
40 |
|
2ex |
|- 2 e. _V |
41 |
40
|
prid2 |
|- 2 e. { 1 , 2 } |
42 |
41 1
|
eleqtrri |
|- 2 e. I |
43 |
42
|
a1i |
|- ( p : I --> RR -> 2 e. I ) |
44 |
14 43
|
ffvelrnd |
|- ( p : I --> RR -> ( p ` 2 ) e. RR ) |
45 |
13 44
|
sylbi |
|- ( p e. ( RR ^m I ) -> ( p ` 2 ) e. RR ) |
46 |
45 3
|
eleq2s |
|- ( p e. P -> ( p ` 2 ) e. RR ) |
47 |
46
|
adantl |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( p ` 2 ) e. RR ) |
48 |
42
|
a1i |
|- ( X : I --> RR -> 2 e. I ) |
49 |
24 48
|
ffvelrnd |
|- ( X : I --> RR -> ( X ` 2 ) e. RR ) |
50 |
23 49
|
sylbi |
|- ( X e. ( RR ^m I ) -> ( X ` 2 ) e. RR ) |
51 |
50 3
|
eleq2s |
|- ( X e. P -> ( X ` 2 ) e. RR ) |
52 |
51
|
3ad2ant1 |
|- ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X ` 2 ) e. RR ) |
53 |
52
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( X ` 2 ) e. RR ) |
54 |
3
|
eleq2i |
|- ( Y e. P <-> Y e. ( RR ^m I ) ) |
55 |
54 31
|
bitri |
|- ( Y e. P <-> Y : I --> RR ) |
56 |
42
|
a1i |
|- ( Y : I --> RR -> 2 e. I ) |
57 |
32 56
|
ffvelrnd |
|- ( Y : I --> RR -> ( Y ` 2 ) e. RR ) |
58 |
55 57
|
sylbi |
|- ( Y e. P -> ( Y ` 2 ) e. RR ) |
59 |
58
|
3ad2ant2 |
|- ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( Y ` 2 ) e. RR ) |
60 |
59
|
adantr |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( Y ` 2 ) e. RR ) |
61 |
22 30 38 39 47 53 60 5
|
affinecomb1 |
|- ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( p ` 2 ) = ( ( S x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) ) ) |
62 |
61
|
rabbidva |
|- ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } = { p e. P | ( p ` 2 ) = ( ( S x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) } ) |
63 |
9 62
|
eqtrd |
|- ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X L Y ) = { p e. P | ( p ` 2 ) = ( ( S x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) } ) |