| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2line.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | rrx2line.e |  |-  E = ( RR^ ` I ) | 
						
							| 3 |  | rrx2line.b |  |-  P = ( RR ^m I ) | 
						
							| 4 |  | rrx2line.l |  |-  L = ( LineM ` E ) | 
						
							| 5 |  | rrx2linesl.s |  |-  S = ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) | 
						
							| 6 |  | fveq1 |  |-  ( X = Y -> ( X ` 1 ) = ( Y ` 1 ) ) | 
						
							| 7 | 6 | necon3i |  |-  ( ( X ` 1 ) =/= ( Y ` 1 ) -> X =/= Y ) | 
						
							| 8 | 1 2 3 4 | rrx2line |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } ) | 
						
							| 9 | 7 8 | syl3an3 |  |-  ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X L Y ) = { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } ) | 
						
							| 10 |  | reex |  |-  RR e. _V | 
						
							| 11 |  | prex |  |-  { 1 , 2 } e. _V | 
						
							| 12 | 1 11 | eqeltri |  |-  I e. _V | 
						
							| 13 | 10 12 | elmap |  |-  ( p e. ( RR ^m I ) <-> p : I --> RR ) | 
						
							| 14 |  | id |  |-  ( p : I --> RR -> p : I --> RR ) | 
						
							| 15 |  | 1ex |  |-  1 e. _V | 
						
							| 16 | 15 | prid1 |  |-  1 e. { 1 , 2 } | 
						
							| 17 | 16 1 | eleqtrri |  |-  1 e. I | 
						
							| 18 | 17 | a1i |  |-  ( p : I --> RR -> 1 e. I ) | 
						
							| 19 | 14 18 | ffvelcdmd |  |-  ( p : I --> RR -> ( p ` 1 ) e. RR ) | 
						
							| 20 | 13 19 | sylbi |  |-  ( p e. ( RR ^m I ) -> ( p ` 1 ) e. RR ) | 
						
							| 21 | 20 3 | eleq2s |  |-  ( p e. P -> ( p ` 1 ) e. RR ) | 
						
							| 22 | 21 | adantl |  |-  ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( p ` 1 ) e. RR ) | 
						
							| 23 | 10 12 | elmap |  |-  ( X e. ( RR ^m I ) <-> X : I --> RR ) | 
						
							| 24 |  | id |  |-  ( X : I --> RR -> X : I --> RR ) | 
						
							| 25 | 17 | a1i |  |-  ( X : I --> RR -> 1 e. I ) | 
						
							| 26 | 24 25 | ffvelcdmd |  |-  ( X : I --> RR -> ( X ` 1 ) e. RR ) | 
						
							| 27 | 23 26 | sylbi |  |-  ( X e. ( RR ^m I ) -> ( X ` 1 ) e. RR ) | 
						
							| 28 | 27 3 | eleq2s |  |-  ( X e. P -> ( X ` 1 ) e. RR ) | 
						
							| 29 | 28 | 3ad2ant1 |  |-  ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X ` 1 ) e. RR ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( X ` 1 ) e. RR ) | 
						
							| 31 | 10 12 | elmap |  |-  ( Y e. ( RR ^m I ) <-> Y : I --> RR ) | 
						
							| 32 |  | id |  |-  ( Y : I --> RR -> Y : I --> RR ) | 
						
							| 33 | 17 | a1i |  |-  ( Y : I --> RR -> 1 e. I ) | 
						
							| 34 | 32 33 | ffvelcdmd |  |-  ( Y : I --> RR -> ( Y ` 1 ) e. RR ) | 
						
							| 35 | 31 34 | sylbi |  |-  ( Y e. ( RR ^m I ) -> ( Y ` 1 ) e. RR ) | 
						
							| 36 | 35 3 | eleq2s |  |-  ( Y e. P -> ( Y ` 1 ) e. RR ) | 
						
							| 37 | 36 | 3ad2ant2 |  |-  ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( Y ` 1 ) e. RR ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( Y ` 1 ) e. RR ) | 
						
							| 39 |  | simpl3 |  |-  ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( X ` 1 ) =/= ( Y ` 1 ) ) | 
						
							| 40 |  | 2ex |  |-  2 e. _V | 
						
							| 41 | 40 | prid2 |  |-  2 e. { 1 , 2 } | 
						
							| 42 | 41 1 | eleqtrri |  |-  2 e. I | 
						
							| 43 | 42 | a1i |  |-  ( p : I --> RR -> 2 e. I ) | 
						
							| 44 | 14 43 | ffvelcdmd |  |-  ( p : I --> RR -> ( p ` 2 ) e. RR ) | 
						
							| 45 | 13 44 | sylbi |  |-  ( p e. ( RR ^m I ) -> ( p ` 2 ) e. RR ) | 
						
							| 46 | 45 3 | eleq2s |  |-  ( p e. P -> ( p ` 2 ) e. RR ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( p ` 2 ) e. RR ) | 
						
							| 48 | 42 | a1i |  |-  ( X : I --> RR -> 2 e. I ) | 
						
							| 49 | 24 48 | ffvelcdmd |  |-  ( X : I --> RR -> ( X ` 2 ) e. RR ) | 
						
							| 50 | 23 49 | sylbi |  |-  ( X e. ( RR ^m I ) -> ( X ` 2 ) e. RR ) | 
						
							| 51 | 50 3 | eleq2s |  |-  ( X e. P -> ( X ` 2 ) e. RR ) | 
						
							| 52 | 51 | 3ad2ant1 |  |-  ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X ` 2 ) e. RR ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( X ` 2 ) e. RR ) | 
						
							| 54 | 3 | eleq2i |  |-  ( Y e. P <-> Y e. ( RR ^m I ) ) | 
						
							| 55 | 54 31 | bitri |  |-  ( Y e. P <-> Y : I --> RR ) | 
						
							| 56 | 42 | a1i |  |-  ( Y : I --> RR -> 2 e. I ) | 
						
							| 57 | 32 56 | ffvelcdmd |  |-  ( Y : I --> RR -> ( Y ` 2 ) e. RR ) | 
						
							| 58 | 55 57 | sylbi |  |-  ( Y e. P -> ( Y ` 2 ) e. RR ) | 
						
							| 59 | 58 | 3ad2ant2 |  |-  ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( Y ` 2 ) e. RR ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( Y ` 2 ) e. RR ) | 
						
							| 61 | 22 30 38 39 47 53 60 5 | affinecomb1 |  |-  ( ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( p ` 2 ) = ( ( S x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) ) ) | 
						
							| 62 | 61 | rabbidva |  |-  ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } = { p e. P | ( p ` 2 ) = ( ( S x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) } ) | 
						
							| 63 | 9 62 | eqtrd |  |-  ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X L Y ) = { p e. P | ( p ` 2 ) = ( ( S x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) } ) |