| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2line.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | rrx2line.e |  |-  E = ( RR^ ` I ) | 
						
							| 3 |  | rrx2line.b |  |-  P = ( RR ^m I ) | 
						
							| 4 |  | rrx2line.l |  |-  L = ( LineM ` E ) | 
						
							| 5 |  | prfi |  |-  { 1 , 2 } e. Fin | 
						
							| 6 | 1 5 | eqeltri |  |-  I e. Fin | 
						
							| 7 | 2 3 4 | rrxlinec |  |-  ( ( I e. Fin /\ ( X e. P /\ Y e. P /\ X =/= Y ) ) -> ( X L Y ) = { p e. P | E. t e. RR A. i e. I ( p ` i ) = ( ( ( 1 - t ) x. ( X ` i ) ) + ( t x. ( Y ` i ) ) ) } ) | 
						
							| 8 | 6 7 | mpan |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | E. t e. RR A. i e. I ( p ` i ) = ( ( ( 1 - t ) x. ( X ` i ) ) + ( t x. ( Y ` i ) ) ) } ) | 
						
							| 9 | 1 | a1i |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ t e. RR ) -> I = { 1 , 2 } ) | 
						
							| 10 | 9 | raleqdv |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ t e. RR ) -> ( A. i e. I ( p ` i ) = ( ( ( 1 - t ) x. ( X ` i ) ) + ( t x. ( Y ` i ) ) ) <-> A. i e. { 1 , 2 } ( p ` i ) = ( ( ( 1 - t ) x. ( X ` i ) ) + ( t x. ( Y ` i ) ) ) ) ) | 
						
							| 11 |  | 1ex |  |-  1 e. _V | 
						
							| 12 |  | 2ex |  |-  2 e. _V | 
						
							| 13 |  | fveq2 |  |-  ( i = 1 -> ( p ` i ) = ( p ` 1 ) ) | 
						
							| 14 |  | fveq2 |  |-  ( i = 1 -> ( X ` i ) = ( X ` 1 ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( i = 1 -> ( ( 1 - t ) x. ( X ` i ) ) = ( ( 1 - t ) x. ( X ` 1 ) ) ) | 
						
							| 16 |  | fveq2 |  |-  ( i = 1 -> ( Y ` i ) = ( Y ` 1 ) ) | 
						
							| 17 | 16 | oveq2d |  |-  ( i = 1 -> ( t x. ( Y ` i ) ) = ( t x. ( Y ` 1 ) ) ) | 
						
							| 18 | 15 17 | oveq12d |  |-  ( i = 1 -> ( ( ( 1 - t ) x. ( X ` i ) ) + ( t x. ( Y ` i ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) ) | 
						
							| 19 | 13 18 | eqeq12d |  |-  ( i = 1 -> ( ( p ` i ) = ( ( ( 1 - t ) x. ( X ` i ) ) + ( t x. ( Y ` i ) ) ) <-> ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) ) ) | 
						
							| 20 |  | fveq2 |  |-  ( i = 2 -> ( p ` i ) = ( p ` 2 ) ) | 
						
							| 21 |  | fveq2 |  |-  ( i = 2 -> ( X ` i ) = ( X ` 2 ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( i = 2 -> ( ( 1 - t ) x. ( X ` i ) ) = ( ( 1 - t ) x. ( X ` 2 ) ) ) | 
						
							| 23 |  | fveq2 |  |-  ( i = 2 -> ( Y ` i ) = ( Y ` 2 ) ) | 
						
							| 24 | 23 | oveq2d |  |-  ( i = 2 -> ( t x. ( Y ` i ) ) = ( t x. ( Y ` 2 ) ) ) | 
						
							| 25 | 22 24 | oveq12d |  |-  ( i = 2 -> ( ( ( 1 - t ) x. ( X ` i ) ) + ( t x. ( Y ` i ) ) ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) | 
						
							| 26 | 20 25 | eqeq12d |  |-  ( i = 2 -> ( ( p ` i ) = ( ( ( 1 - t ) x. ( X ` i ) ) + ( t x. ( Y ` i ) ) ) <-> ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) ) | 
						
							| 27 | 11 12 19 26 | ralpr |  |-  ( A. i e. { 1 , 2 } ( p ` i ) = ( ( ( 1 - t ) x. ( X ` i ) ) + ( t x. ( Y ` i ) ) ) <-> ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) ) | 
						
							| 28 | 10 27 | bitrdi |  |-  ( ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) /\ t e. RR ) -> ( A. i e. I ( p ` i ) = ( ( ( 1 - t ) x. ( X ` i ) ) + ( t x. ( Y ` i ) ) ) <-> ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) ) ) | 
						
							| 29 | 28 | rexbidva |  |-  ( ( ( X e. P /\ Y e. P /\ X =/= Y ) /\ p e. P ) -> ( E. t e. RR A. i e. I ( p ` i ) = ( ( ( 1 - t ) x. ( X ` i ) ) + ( t x. ( Y ` i ) ) ) <-> E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) ) ) | 
						
							| 30 | 29 | rabbidva |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> { p e. P | E. t e. RR A. i e. I ( p ` i ) = ( ( ( 1 - t ) x. ( X ` i ) ) + ( t x. ( Y ` i ) ) ) } = { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } ) | 
						
							| 31 | 8 30 | eqtrd |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } ) |