| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2line.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | rrx2line.e |  |-  E = ( RR^ ` I ) | 
						
							| 3 |  | rrx2line.b |  |-  P = ( RR ^m I ) | 
						
							| 4 |  | rrx2line.l |  |-  L = ( LineM ` E ) | 
						
							| 5 |  | fveq1 |  |-  ( X = Y -> ( X ` 2 ) = ( Y ` 2 ) ) | 
						
							| 6 | 5 | necon3i |  |-  ( ( X ` 2 ) =/= ( Y ` 2 ) -> X =/= Y ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) -> X =/= Y ) | 
						
							| 8 | 1 2 3 4 | rrx2line |  |-  ( ( X e. P /\ Y e. P /\ X =/= Y ) -> ( X L Y ) = { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } ) | 
						
							| 9 | 7 8 | syl3an3 |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X L Y ) = { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } ) | 
						
							| 10 |  | oveq2 |  |-  ( ( Y ` 1 ) = ( X ` 1 ) -> ( t x. ( Y ` 1 ) ) = ( t x. ( X ` 1 ) ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( ( Y ` 1 ) = ( X ` 1 ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) ) | 
						
							| 12 | 11 | eqcoms |  |-  ( ( X ` 1 ) = ( Y ` 1 ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) ) | 
						
							| 14 | 13 | 3ad2ant3 |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) ) | 
						
							| 17 | 1 3 | rrx2pxel |  |-  ( X e. P -> ( X ` 1 ) e. RR ) | 
						
							| 18 | 17 | recnd |  |-  ( X e. P -> ( X ` 1 ) e. CC ) | 
						
							| 19 | 18 | 3ad2ant1 |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X ` 1 ) e. CC ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( X ` 1 ) e. CC ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( X ` 1 ) e. CC ) | 
						
							| 22 |  | recn |  |-  ( t e. RR -> t e. CC ) | 
						
							| 23 | 22 | adantl |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> t e. CC ) | 
						
							| 24 | 21 23 | affineid |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( X ` 1 ) ) ) = ( X ` 1 ) ) | 
						
							| 25 | 16 24 | eqtrd |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) = ( X ` 1 ) ) | 
						
							| 26 | 25 | eqeq2d |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) <-> ( p ` 1 ) = ( X ` 1 ) ) ) | 
						
							| 27 | 26 | anbi1d |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) ) ) | 
						
							| 28 | 27 | rexbidva |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> E. t e. RR ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) ) ) | 
						
							| 29 |  | simpl |  |-  ( ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) -> ( p ` 1 ) = ( X ` 1 ) ) | 
						
							| 30 | 29 | a1i |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ t e. RR ) -> ( ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) -> ( p ` 1 ) = ( X ` 1 ) ) ) | 
						
							| 31 | 30 | rexlimdva |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) -> ( p ` 1 ) = ( X ` 1 ) ) ) | 
						
							| 32 | 1 3 | rrx2pyel |  |-  ( p e. P -> ( p ` 2 ) e. RR ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( p ` 2 ) e. RR ) | 
						
							| 34 | 1 3 | rrx2pyel |  |-  ( X e. P -> ( X ` 2 ) e. RR ) | 
						
							| 35 | 34 | 3ad2ant1 |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X ` 2 ) e. RR ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( X ` 2 ) e. RR ) | 
						
							| 37 | 33 36 | resubcld |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( p ` 2 ) - ( X ` 2 ) ) e. RR ) | 
						
							| 38 | 1 3 | rrx2pyel |  |-  ( Y e. P -> ( Y ` 2 ) e. RR ) | 
						
							| 39 | 38 | 3ad2ant2 |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( Y ` 2 ) e. RR ) | 
						
							| 40 | 39 35 | resubcld |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. RR ) | 
						
							| 41 | 40 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. RR ) | 
						
							| 42 | 38 | recnd |  |-  ( Y e. P -> ( Y ` 2 ) e. CC ) | 
						
							| 43 | 42 | 3ad2ant2 |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( Y ` 2 ) e. CC ) | 
						
							| 44 | 34 | recnd |  |-  ( X e. P -> ( X ` 2 ) e. CC ) | 
						
							| 45 | 44 | 3ad2ant1 |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X ` 2 ) e. CC ) | 
						
							| 46 |  | simpr |  |-  ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) -> ( X ` 2 ) =/= ( Y ` 2 ) ) | 
						
							| 47 | 46 | necomd |  |-  ( ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) -> ( Y ` 2 ) =/= ( X ` 2 ) ) | 
						
							| 48 | 47 | 3ad2ant3 |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( Y ` 2 ) =/= ( X ` 2 ) ) | 
						
							| 49 | 43 45 48 | subne0d |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) =/= 0 ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) =/= 0 ) | 
						
							| 51 | 37 41 50 | redivcld |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) e. RR ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) e. RR ) | 
						
							| 53 |  | oveq2 |  |-  ( t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) -> ( 1 - t ) = ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) ) | 
						
							| 54 | 53 | oveq1d |  |-  ( t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) -> ( ( 1 - t ) x. ( X ` 2 ) ) = ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) ) | 
						
							| 55 |  | oveq1 |  |-  ( t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) -> ( t x. ( Y ` 2 ) ) = ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) | 
						
							| 56 | 54 55 | oveq12d |  |-  ( t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) -> ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) = ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) ) | 
						
							| 57 | 56 | eqeq2d |  |-  ( t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) -> ( ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) <-> ( p ` 2 ) = ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) ) ) | 
						
							| 58 | 57 | anbi2d |  |-  ( t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) -> ( ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) ) ) ) | 
						
							| 59 | 58 | adantl |  |-  ( ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) /\ t = ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) -> ( ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) ) ) ) | 
						
							| 60 |  | simpr |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> ( p ` 1 ) = ( X ` 1 ) ) | 
						
							| 61 | 44 | mullidd |  |-  ( X e. P -> ( 1 x. ( X ` 2 ) ) = ( X ` 2 ) ) | 
						
							| 62 | 61 | 3ad2ant1 |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( 1 x. ( X ` 2 ) ) = ( X ` 2 ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( 1 x. ( X ` 2 ) ) = ( X ` 2 ) ) | 
						
							| 64 | 37 | recnd |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( p ` 2 ) - ( X ` 2 ) ) e. CC ) | 
						
							| 65 | 42 | adantl |  |-  ( ( X e. P /\ Y e. P ) -> ( Y ` 2 ) e. CC ) | 
						
							| 66 | 44 | adantr |  |-  ( ( X e. P /\ Y e. P ) -> ( X ` 2 ) e. CC ) | 
						
							| 67 | 65 66 | subcld |  |-  ( ( X e. P /\ Y e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) | 
						
							| 68 | 67 | 3adant3 |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) | 
						
							| 69 | 68 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) | 
						
							| 70 | 64 69 50 | divcan1d |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( ( Y ` 2 ) - ( X ` 2 ) ) ) = ( ( p ` 2 ) - ( X ` 2 ) ) ) | 
						
							| 71 | 63 70 | oveq12d |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( 1 x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) = ( ( X ` 2 ) + ( ( p ` 2 ) - ( X ` 2 ) ) ) ) | 
						
							| 72 | 45 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( X ` 2 ) e. CC ) | 
						
							| 73 | 32 | recnd |  |-  ( p e. P -> ( p ` 2 ) e. CC ) | 
						
							| 74 | 73 | adantl |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( p ` 2 ) e. CC ) | 
						
							| 75 | 72 74 | pncan3d |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( X ` 2 ) + ( ( p ` 2 ) - ( X ` 2 ) ) ) = ( p ` 2 ) ) | 
						
							| 76 | 71 75 | eqtr2d |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( p ` 2 ) = ( ( 1 x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) ) | 
						
							| 77 | 76 | adantr |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> ( p ` 2 ) = ( ( 1 x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) ) | 
						
							| 78 |  | 1cnd |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> 1 e. CC ) | 
						
							| 79 | 51 | recnd |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) e. CC ) | 
						
							| 80 | 43 | adantr |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( Y ` 2 ) e. CC ) | 
						
							| 81 | 78 79 72 80 | submuladdmuld |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) = ( ( 1 x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) = ( ( 1 x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) ) | 
						
							| 83 | 77 82 | eqtr4d |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> ( p ` 2 ) = ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) ) | 
						
							| 84 | 60 83 | jca |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) ) x. ( X ` 2 ) ) + ( ( ( ( p ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 2 ) - ( X ` 2 ) ) ) x. ( Y ` 2 ) ) ) ) ) | 
						
							| 85 | 52 59 84 | rspcedvd |  |-  ( ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) /\ ( p ` 1 ) = ( X ` 1 ) ) -> E. t e. RR ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) ) | 
						
							| 86 | 85 | ex |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( ( p ` 1 ) = ( X ` 1 ) -> E. t e. RR ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) ) ) | 
						
							| 87 | 31 86 | impbid |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( X ` 1 ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( p ` 1 ) = ( X ` 1 ) ) ) | 
						
							| 88 | 28 87 | bitrd |  |-  ( ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) /\ p e. P ) -> ( E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) <-> ( p ` 1 ) = ( X ` 1 ) ) ) | 
						
							| 89 | 88 | rabbidva |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> { p e. P | E. t e. RR ( ( p ` 1 ) = ( ( ( 1 - t ) x. ( X ` 1 ) ) + ( t x. ( Y ` 1 ) ) ) /\ ( p ` 2 ) = ( ( ( 1 - t ) x. ( X ` 2 ) ) + ( t x. ( Y ` 2 ) ) ) ) } = { p e. P | ( p ` 1 ) = ( X ` 1 ) } ) | 
						
							| 90 | 9 89 | eqtrd |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X L Y ) = { p e. P | ( p ` 1 ) = ( X ` 1 ) } ) |