Step |
Hyp |
Ref |
Expression |
1 |
|
rrx2line.i |
|
2 |
|
rrx2line.e |
|
3 |
|
rrx2line.b |
|
4 |
|
rrx2line.l |
|
5 |
|
fveq1 |
|
6 |
5
|
necon3i |
|
7 |
6
|
adantl |
|
8 |
1 2 3 4
|
rrx2line |
|
9 |
7 8
|
syl3an3 |
|
10 |
|
oveq2 |
|
11 |
10
|
oveq2d |
|
12 |
11
|
eqcoms |
|
13 |
12
|
adantr |
|
14 |
13
|
3ad2ant3 |
|
15 |
14
|
adantr |
|
16 |
15
|
adantr |
|
17 |
1 3
|
rrx2pxel |
|
18 |
17
|
recnd |
|
19 |
18
|
3ad2ant1 |
|
20 |
19
|
adantr |
|
21 |
20
|
adantr |
|
22 |
|
recn |
|
23 |
22
|
adantl |
|
24 |
21 23
|
affineid |
|
25 |
16 24
|
eqtrd |
|
26 |
25
|
eqeq2d |
|
27 |
26
|
anbi1d |
|
28 |
27
|
rexbidva |
|
29 |
|
simpl |
|
30 |
29
|
a1i |
|
31 |
30
|
rexlimdva |
|
32 |
1 3
|
rrx2pyel |
|
33 |
32
|
adantl |
|
34 |
1 3
|
rrx2pyel |
|
35 |
34
|
3ad2ant1 |
|
36 |
35
|
adantr |
|
37 |
33 36
|
resubcld |
|
38 |
1 3
|
rrx2pyel |
|
39 |
38
|
3ad2ant2 |
|
40 |
39 35
|
resubcld |
|
41 |
40
|
adantr |
|
42 |
38
|
recnd |
|
43 |
42
|
3ad2ant2 |
|
44 |
34
|
recnd |
|
45 |
44
|
3ad2ant1 |
|
46 |
|
simpr |
|
47 |
46
|
necomd |
|
48 |
47
|
3ad2ant3 |
|
49 |
43 45 48
|
subne0d |
|
50 |
49
|
adantr |
|
51 |
37 41 50
|
redivcld |
|
52 |
51
|
adantr |
|
53 |
|
oveq2 |
|
54 |
53
|
oveq1d |
|
55 |
|
oveq1 |
|
56 |
54 55
|
oveq12d |
|
57 |
56
|
eqeq2d |
|
58 |
57
|
anbi2d |
|
59 |
58
|
adantl |
|
60 |
|
simpr |
|
61 |
44
|
mulid2d |
|
62 |
61
|
3ad2ant1 |
|
63 |
62
|
adantr |
|
64 |
37
|
recnd |
|
65 |
42
|
adantl |
|
66 |
44
|
adantr |
|
67 |
65 66
|
subcld |
|
68 |
67
|
3adant3 |
|
69 |
68
|
adantr |
|
70 |
64 69 50
|
divcan1d |
|
71 |
63 70
|
oveq12d |
|
72 |
45
|
adantr |
|
73 |
32
|
recnd |
|
74 |
73
|
adantl |
|
75 |
72 74
|
pncan3d |
|
76 |
71 75
|
eqtr2d |
|
77 |
76
|
adantr |
|
78 |
|
1cnd |
|
79 |
51
|
recnd |
|
80 |
43
|
adantr |
|
81 |
78 79 72 80
|
submuladdmuld |
|
82 |
81
|
adantr |
|
83 |
77 82
|
eqtr4d |
|
84 |
60 83
|
jca |
|
85 |
52 59 84
|
rspcedvd |
|
86 |
85
|
ex |
|
87 |
31 86
|
impbid |
|
88 |
28 87
|
bitrd |
|
89 |
88
|
rabbidva |
|
90 |
9 89
|
eqtrd |
|