Metamath Proof Explorer


Theorem rrx2vlinest

Description: The vertical line passing through the two different points X and Y in a real Euclidean space of dimension 2 in "standard form". (Contributed by AV, 2-Feb-2023)

Ref Expression
Hypotheses rrx2line.i I=12
rrx2line.e E=msup
rrx2line.b P=I
rrx2line.l L=LineME
Assertion rrx2vlinest XPYPX1=Y1X2Y2XLY=pP|p1=X1

Proof

Step Hyp Ref Expression
1 rrx2line.i I=12
2 rrx2line.e E=msup
3 rrx2line.b P=I
4 rrx2line.l L=LineME
5 fveq1 X=YX2=Y2
6 5 necon3i X2Y2XY
7 6 adantl X1=Y1X2Y2XY
8 1 2 3 4 rrx2line XPYPXYXLY=pP|tp1=1tX1+tY1p2=1tX2+tY2
9 7 8 syl3an3 XPYPX1=Y1X2Y2XLY=pP|tp1=1tX1+tY1p2=1tX2+tY2
10 oveq2 Y1=X1tY1=tX1
11 10 oveq2d Y1=X11tX1+tY1=1tX1+tX1
12 11 eqcoms X1=Y11tX1+tY1=1tX1+tX1
13 12 adantr X1=Y1X2Y21tX1+tY1=1tX1+tX1
14 13 3ad2ant3 XPYPX1=Y1X2Y21tX1+tY1=1tX1+tX1
15 14 adantr XPYPX1=Y1X2Y2pP1tX1+tY1=1tX1+tX1
16 15 adantr XPYPX1=Y1X2Y2pPt1tX1+tY1=1tX1+tX1
17 1 3 rrx2pxel XPX1
18 17 recnd XPX1
19 18 3ad2ant1 XPYPX1=Y1X2Y2X1
20 19 adantr XPYPX1=Y1X2Y2pPX1
21 20 adantr XPYPX1=Y1X2Y2pPtX1
22 recn tt
23 22 adantl XPYPX1=Y1X2Y2pPtt
24 21 23 affineid XPYPX1=Y1X2Y2pPt1tX1+tX1=X1
25 16 24 eqtrd XPYPX1=Y1X2Y2pPt1tX1+tY1=X1
26 25 eqeq2d XPYPX1=Y1X2Y2pPtp1=1tX1+tY1p1=X1
27 26 anbi1d XPYPX1=Y1X2Y2pPtp1=1tX1+tY1p2=1tX2+tY2p1=X1p2=1tX2+tY2
28 27 rexbidva XPYPX1=Y1X2Y2pPtp1=1tX1+tY1p2=1tX2+tY2tp1=X1p2=1tX2+tY2
29 simpl p1=X1p2=1tX2+tY2p1=X1
30 29 a1i XPYPX1=Y1X2Y2pPtp1=X1p2=1tX2+tY2p1=X1
31 30 rexlimdva XPYPX1=Y1X2Y2pPtp1=X1p2=1tX2+tY2p1=X1
32 1 3 rrx2pyel pPp2
33 32 adantl XPYPX1=Y1X2Y2pPp2
34 1 3 rrx2pyel XPX2
35 34 3ad2ant1 XPYPX1=Y1X2Y2X2
36 35 adantr XPYPX1=Y1X2Y2pPX2
37 33 36 resubcld XPYPX1=Y1X2Y2pPp2X2
38 1 3 rrx2pyel YPY2
39 38 3ad2ant2 XPYPX1=Y1X2Y2Y2
40 39 35 resubcld XPYPX1=Y1X2Y2Y2X2
41 40 adantr XPYPX1=Y1X2Y2pPY2X2
42 38 recnd YPY2
43 42 3ad2ant2 XPYPX1=Y1X2Y2Y2
44 34 recnd XPX2
45 44 3ad2ant1 XPYPX1=Y1X2Y2X2
46 simpr X1=Y1X2Y2X2Y2
47 46 necomd X1=Y1X2Y2Y2X2
48 47 3ad2ant3 XPYPX1=Y1X2Y2Y2X2
49 43 45 48 subne0d XPYPX1=Y1X2Y2Y2X20
50 49 adantr XPYPX1=Y1X2Y2pPY2X20
51 37 41 50 redivcld XPYPX1=Y1X2Y2pPp2X2Y2X2
52 51 adantr XPYPX1=Y1X2Y2pPp1=X1p2X2Y2X2
53 oveq2 t=p2X2Y2X21t=1p2X2Y2X2
54 53 oveq1d t=p2X2Y2X21tX2=1p2X2Y2X2X2
55 oveq1 t=p2X2Y2X2tY2=p2X2Y2X2Y2
56 54 55 oveq12d t=p2X2Y2X21tX2+tY2=1p2X2Y2X2X2+p2X2Y2X2Y2
57 56 eqeq2d t=p2X2Y2X2p2=1tX2+tY2p2=1p2X2Y2X2X2+p2X2Y2X2Y2
58 57 anbi2d t=p2X2Y2X2p1=X1p2=1tX2+tY2p1=X1p2=1p2X2Y2X2X2+p2X2Y2X2Y2
59 58 adantl XPYPX1=Y1X2Y2pPp1=X1t=p2X2Y2X2p1=X1p2=1tX2+tY2p1=X1p2=1p2X2Y2X2X2+p2X2Y2X2Y2
60 simpr XPYPX1=Y1X2Y2pPp1=X1p1=X1
61 44 mullidd XP1X2=X2
62 61 3ad2ant1 XPYPX1=Y1X2Y21X2=X2
63 62 adantr XPYPX1=Y1X2Y2pP1X2=X2
64 37 recnd XPYPX1=Y1X2Y2pPp2X2
65 42 adantl XPYPY2
66 44 adantr XPYPX2
67 65 66 subcld XPYPY2X2
68 67 3adant3 XPYPX1=Y1X2Y2Y2X2
69 68 adantr XPYPX1=Y1X2Y2pPY2X2
70 64 69 50 divcan1d XPYPX1=Y1X2Y2pPp2X2Y2X2Y2X2=p2X2
71 63 70 oveq12d XPYPX1=Y1X2Y2pP1X2+p2X2Y2X2Y2X2=X2+p2-X2
72 45 adantr XPYPX1=Y1X2Y2pPX2
73 32 recnd pPp2
74 73 adantl XPYPX1=Y1X2Y2pPp2
75 72 74 pncan3d XPYPX1=Y1X2Y2pPX2+p2-X2=p2
76 71 75 eqtr2d XPYPX1=Y1X2Y2pPp2=1X2+p2X2Y2X2Y2X2
77 76 adantr XPYPX1=Y1X2Y2pPp1=X1p2=1X2+p2X2Y2X2Y2X2
78 1cnd XPYPX1=Y1X2Y2pP1
79 51 recnd XPYPX1=Y1X2Y2pPp2X2Y2X2
80 43 adantr XPYPX1=Y1X2Y2pPY2
81 78 79 72 80 submuladdmuld XPYPX1=Y1X2Y2pP1p2X2Y2X2X2+p2X2Y2X2Y2=1X2+p2X2Y2X2Y2X2
82 81 adantr XPYPX1=Y1X2Y2pPp1=X11p2X2Y2X2X2+p2X2Y2X2Y2=1X2+p2X2Y2X2Y2X2
83 77 82 eqtr4d XPYPX1=Y1X2Y2pPp1=X1p2=1p2X2Y2X2X2+p2X2Y2X2Y2
84 60 83 jca XPYPX1=Y1X2Y2pPp1=X1p1=X1p2=1p2X2Y2X2X2+p2X2Y2X2Y2
85 52 59 84 rspcedvd XPYPX1=Y1X2Y2pPp1=X1tp1=X1p2=1tX2+tY2
86 85 ex XPYPX1=Y1X2Y2pPp1=X1tp1=X1p2=1tX2+tY2
87 31 86 impbid XPYPX1=Y1X2Y2pPtp1=X1p2=1tX2+tY2p1=X1
88 28 87 bitrd XPYPX1=Y1X2Y2pPtp1=1tX1+tY1p2=1tX2+tY2p1=X1
89 88 rabbidva XPYPX1=Y1X2Y2pP|tp1=1tX1+tY1p2=1tX2+tY2=pP|p1=X1
90 9 89 eqtrd XPYPX1=Y1X2Y2XLY=pP|p1=X1