Step |
Hyp |
Ref |
Expression |
1 |
|
rrx2line.i |
|
2 |
|
rrx2line.e |
|
3 |
|
rrx2line.b |
|
4 |
|
rrx2line.l |
|
5 |
|
rrx2linest.a |
|
6 |
|
rrx2linest.b |
|
7 |
|
rrx2linest.c |
|
8 |
|
simpl1 |
|
9 |
|
simpl2 |
|
10 |
|
simpr |
|
11 |
|
simpr |
|
12 |
11
|
anim1i |
|
13 |
1
|
raleqi |
|
14 |
|
1ex |
|
15 |
|
2ex |
|
16 |
|
fveq2 |
|
17 |
|
fveq2 |
|
18 |
16 17
|
eqeq12d |
|
19 |
|
fveq2 |
|
20 |
|
fveq2 |
|
21 |
19 20
|
eqeq12d |
|
22 |
14 15 18 21
|
ralpr |
|
23 |
13 22
|
bitri |
|
24 |
12 23
|
sylibr |
|
25 |
|
elmapfn |
|
26 |
25 3
|
eleq2s |
|
27 |
|
elmapfn |
|
28 |
27 3
|
eleq2s |
|
29 |
26 28
|
anim12i |
|
30 |
29
|
ad2antrr |
|
31 |
|
eqfnfv |
|
32 |
30 31
|
syl |
|
33 |
24 32
|
mpbird |
|
34 |
33
|
ex |
|
35 |
34
|
necon3d |
|
36 |
35
|
ex |
|
37 |
36
|
com23 |
|
38 |
37
|
3impia |
|
39 |
38
|
imp |
|
40 |
1 2 3 4
|
rrx2vlinest |
|
41 |
8 9 10 39 40
|
syl112anc |
|
42 |
|
ancom |
|
43 |
|
simplr |
|
44 |
|
simpr |
|
45 |
|
simpll |
|
46 |
5
|
oveq1i |
|
47 |
46
|
a1i |
|
48 |
|
oveq2 |
|
49 |
48
|
adantl |
|
50 |
1 3
|
rrx2pxel |
|
51 |
50
|
recnd |
|
52 |
51
|
3ad2ant2 |
|
53 |
52
|
ad2antrr |
|
54 |
53
|
subidd |
|
55 |
49 54
|
eqtrd |
|
56 |
55
|
oveq1d |
|
57 |
1 3
|
rrx2pyel |
|
58 |
57
|
recnd |
|
59 |
58
|
ad2antlr |
|
60 |
59
|
mul02d |
|
61 |
47 56 60
|
3eqtrd |
|
62 |
6
|
oveq1i |
|
63 |
62
|
a1i |
|
64 |
|
oveq1 |
|
65 |
64
|
oveq2d |
|
66 |
7 65
|
syl5eq |
|
67 |
66
|
adantl |
|
68 |
63 67
|
oveq12d |
|
69 |
61 68
|
eqeq12d |
|
70 |
43 44 45 69
|
syl21anc |
|
71 |
1 3
|
rrx2pyel |
|
72 |
71
|
recnd |
|
73 |
72
|
3ad2ant2 |
|
74 |
52 73
|
mulcomd |
|
75 |
74
|
oveq2d |
|
76 |
1 3
|
rrx2pyel |
|
77 |
76
|
recnd |
|
78 |
77
|
3ad2ant1 |
|
79 |
78 73 52
|
subdird |
|
80 |
75 79
|
eqtr4d |
|
81 |
80
|
ad2antlr |
|
82 |
81
|
oveq2d |
|
83 |
82
|
eqeq2d |
|
84 |
|
eqcom |
|
85 |
84
|
a1i |
|
86 |
73
|
ad2antlr |
|
87 |
78
|
ad2antlr |
|
88 |
86 87
|
subcld |
|
89 |
1 3
|
rrx2pxel |
|
90 |
89
|
recnd |
|
91 |
90
|
adantl |
|
92 |
88 91
|
mulcld |
|
93 |
87 86
|
subcld |
|
94 |
52
|
ad2antlr |
|
95 |
93 94
|
mulcld |
|
96 |
|
addeq0 |
|
97 |
92 95 96
|
syl2anc |
|
98 |
93 94
|
mulneg1d |
|
99 |
87 86
|
negsubdi2d |
|
100 |
99
|
oveq1d |
|
101 |
98 100
|
eqtr3d |
|
102 |
101
|
eqeq2d |
|
103 |
|
necom |
|
104 |
39 42 103
|
3imtr3i |
|
105 |
104
|
adantr |
|
106 |
86 87 105
|
subne0d |
|
107 |
91 94 88 106
|
mulcand |
|
108 |
102 107
|
bitrd |
|
109 |
85 97 108
|
3bitrd |
|
110 |
83 109
|
bitrd |
|
111 |
|
simpl |
|
112 |
111
|
eqcomd |
|
113 |
112
|
adantr |
|
114 |
113
|
eqeq2d |
|
115 |
70 110 114
|
3bitrrd |
|
116 |
115
|
rabbidva |
|
117 |
42 116
|
sylbi |
|
118 |
41 117
|
eqtrd |
|
119 |
1 2 3 4
|
rrx2line |
|
120 |
119
|
adantr |
|
121 |
|
df-ne |
|
122 |
89
|
ad2antlr |
|
123 |
1 3
|
rrx2pxel |
|
124 |
123
|
3ad2ant1 |
|
125 |
124
|
ad2antrr |
|
126 |
50
|
3ad2ant2 |
|
127 |
126
|
ad2antrr |
|
128 |
|
simpr |
|
129 |
57
|
ad2antlr |
|
130 |
76
|
3ad2ant1 |
|
131 |
130
|
ad2antrr |
|
132 |
71
|
3ad2ant2 |
|
133 |
132
|
ad2antrr |
|
134 |
122 125 127 128 129 131 133
|
affinecomb2 |
|
135 |
5
|
eqcomi |
|
136 |
135
|
oveq1i |
|
137 |
6
|
eqcomi |
|
138 |
137
|
oveq1i |
|
139 |
7
|
eqcomi |
|
140 |
138 139
|
oveq12i |
|
141 |
136 140
|
eqeq12i |
|
142 |
134 141
|
bitrdi |
|
143 |
142
|
expcom |
|
144 |
121 143
|
sylbir |
|
145 |
144
|
expd |
|
146 |
145
|
impcom |
|
147 |
146
|
imp |
|
148 |
147
|
rabbidva |
|
149 |
120 148
|
eqtrd |
|
150 |
118 149
|
pm2.61dan |
|