| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2line.i | ⊢ 𝐼  =  { 1 ,  2 } | 
						
							| 2 |  | rrx2line.e | ⊢ 𝐸  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 3 |  | rrx2line.b | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 4 |  | rrx2line.l | ⊢ 𝐿  =  ( LineM ‘ 𝐸 ) | 
						
							| 5 |  | rrx2linest.a | ⊢ 𝐴  =  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) ) | 
						
							| 6 |  | rrx2linest.b | ⊢ 𝐵  =  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) ) | 
						
							| 7 |  | rrx2linest.c | ⊢ 𝐶  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 8 |  | simpl1 | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 9 |  | simpl2 | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  𝑌  ∈  𝑃 ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) | 
						
							| 11 |  | simpr | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) | 
						
							| 12 | 11 | anim1i | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) )  →  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 13 | 1 | raleqi | ⊢ ( ∀ 𝑖  ∈  𝐼 ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 )  ↔  ∀ 𝑖  ∈  { 1 ,  2 } ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 14 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 15 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑖  =  1  →  ( 𝑋 ‘ 𝑖 )  =  ( 𝑋 ‘ 1 ) ) | 
						
							| 17 |  | fveq2 | ⊢ ( 𝑖  =  1  →  ( 𝑌 ‘ 𝑖 )  =  ( 𝑌 ‘ 1 ) ) | 
						
							| 18 | 16 17 | eqeq12d | ⊢ ( 𝑖  =  1  →  ( ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 )  ↔  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 19 |  | fveq2 | ⊢ ( 𝑖  =  2  →  ( 𝑋 ‘ 𝑖 )  =  ( 𝑋 ‘ 2 ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑖  =  2  →  ( 𝑌 ‘ 𝑖 )  =  ( 𝑌 ‘ 2 ) ) | 
						
							| 21 | 19 20 | eqeq12d | ⊢ ( 𝑖  =  2  →  ( ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 )  ↔  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 22 | 14 15 18 21 | ralpr | ⊢ ( ∀ 𝑖  ∈  { 1 ,  2 } ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 )  ↔  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 23 | 13 22 | bitri | ⊢ ( ∀ 𝑖  ∈  𝐼 ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 )  ↔  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 24 | 12 23 | sylibr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) )  →  ∀ 𝑖  ∈  𝐼 ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 ) ) | 
						
							| 25 |  | elmapfn | ⊢ ( 𝑋  ∈  ( ℝ  ↑m  𝐼 )  →  𝑋  Fn  𝐼 ) | 
						
							| 26 | 25 3 | eleq2s | ⊢ ( 𝑋  ∈  𝑃  →  𝑋  Fn  𝐼 ) | 
						
							| 27 |  | elmapfn | ⊢ ( 𝑌  ∈  ( ℝ  ↑m  𝐼 )  →  𝑌  Fn  𝐼 ) | 
						
							| 28 | 27 3 | eleq2s | ⊢ ( 𝑌  ∈  𝑃  →  𝑌  Fn  𝐼 ) | 
						
							| 29 | 26 28 | anim12i | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( 𝑋  Fn  𝐼  ∧  𝑌  Fn  𝐼 ) ) | 
						
							| 30 | 29 | ad2antrr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) )  →  ( 𝑋  Fn  𝐼  ∧  𝑌  Fn  𝐼 ) ) | 
						
							| 31 |  | eqfnfv | ⊢ ( ( 𝑋  Fn  𝐼  ∧  𝑌  Fn  𝐼 )  →  ( 𝑋  =  𝑌  ↔  ∀ 𝑖  ∈  𝐼 ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 ) ) ) | 
						
							| 32 | 30 31 | syl | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) )  →  ( 𝑋  =  𝑌  ↔  ∀ 𝑖  ∈  𝐼 ( 𝑋 ‘ 𝑖 )  =  ( 𝑌 ‘ 𝑖 ) ) ) | 
						
							| 33 | 24 32 | mpbird | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ∧  ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 ) )  →  𝑋  =  𝑌 ) | 
						
							| 34 | 33 | ex | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( 𝑋 ‘ 2 )  =  ( 𝑌 ‘ 2 )  →  𝑋  =  𝑌 ) ) | 
						
							| 35 | 34 | necon3d | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋  ≠  𝑌  →  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 36 | 35 | ex | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( 𝑋  ≠  𝑌  →  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 37 | 36 | com23 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃 )  →  ( 𝑋  ≠  𝑌  →  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 38 | 37 | 3impia | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 39 | 38 | imp | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) | 
						
							| 40 | 1 2 3 4 | rrx2vlinest | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) } ) | 
						
							| 41 | 8 9 10 39 40 | syl112anc | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) } ) | 
						
							| 42 |  | ancom | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ↔  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 43 |  | simplr | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 44 |  | simpr | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  𝑝  ∈  𝑃 ) | 
						
							| 45 |  | simpll | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) | 
						
							| 46 | 5 | oveq1i | ⊢ ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) ) | 
						
							| 47 | 46 | a1i | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) ) ) | 
						
							| 48 |  | oveq2 | ⊢ ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  ( ( 𝑌 ‘ 1 )  −  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 49 | 48 | adantl | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  ( ( 𝑌 ‘ 1 )  −  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 50 | 1 3 | rrx2pxel | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 1 )  ∈  ℝ ) | 
						
							| 51 | 50 | recnd | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 1 )  ∈  ℂ ) | 
						
							| 52 | 51 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌 ‘ 1 )  ∈  ℂ ) | 
						
							| 53 | 52 | ad2antrr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑌 ‘ 1 )  ∈  ℂ ) | 
						
							| 54 | 53 | subidd | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( 𝑌 ‘ 1 )  −  ( 𝑌 ‘ 1 ) )  =  0 ) | 
						
							| 55 | 49 54 | eqtrd | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  0 ) | 
						
							| 56 | 55 | oveq1d | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( 0  ·  ( 𝑝 ‘ 2 ) ) ) | 
						
							| 57 | 1 3 | rrx2pyel | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 2 )  ∈  ℝ ) | 
						
							| 58 | 57 | recnd | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 2 )  ∈  ℂ ) | 
						
							| 59 | 58 | ad2antlr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑝 ‘ 2 )  ∈  ℂ ) | 
						
							| 60 | 59 | mul02d | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 0  ·  ( 𝑝 ‘ 2 ) )  =  0 ) | 
						
							| 61 | 47 56 60 | 3eqtrd | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  0 ) | 
						
							| 62 | 6 | oveq1i | ⊢ ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) ) | 
						
							| 63 | 62 | a1i | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) ) ) | 
						
							| 64 |  | oveq1 | ⊢ ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) )  =  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 65 | 64 | oveq2d | ⊢ ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 66 | 7 65 | eqtrid | ⊢ ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  𝐶  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  𝐶  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 68 | 63 67 | oveq12d | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) ) | 
						
							| 69 | 61 68 | eqeq12d | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 )  ↔  0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) ) ) | 
						
							| 70 | 43 44 45 69 | syl21anc | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 )  ↔  0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) ) ) | 
						
							| 71 | 1 3 | rrx2pyel | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 2 )  ∈  ℝ ) | 
						
							| 72 | 71 | recnd | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 2 )  ∈  ℂ ) | 
						
							| 73 | 72 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌 ‘ 2 )  ∈  ℂ ) | 
						
							| 74 | 52 73 | mulcomd | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) )  =  ( ( 𝑌 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 75 | 74 | oveq2d | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) ) ) ) | 
						
							| 76 | 1 3 | rrx2pyel | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 77 | 76 | recnd | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 2 )  ∈  ℂ ) | 
						
							| 78 | 77 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 ‘ 2 )  ∈  ℂ ) | 
						
							| 79 | 78 73 52 | subdird | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  =  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) ) ) ) | 
						
							| 80 | 75 79 | eqtr4d | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 81 | 80 | ad2antlr | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 82 | 81 | oveq2d | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) ) | 
						
							| 83 | 82 | eqeq2d | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) ) ) | 
						
							| 84 |  | eqcom | ⊢ ( 0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  ↔  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  =  0 ) | 
						
							| 85 | 84 | a1i | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  ↔  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  =  0 ) ) | 
						
							| 86 | 73 | ad2antlr | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑌 ‘ 2 )  ∈  ℂ ) | 
						
							| 87 | 78 | ad2antlr | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑋 ‘ 2 )  ∈  ℂ ) | 
						
							| 88 | 86 87 | subcld | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ∈  ℂ ) | 
						
							| 89 | 1 3 | rrx2pxel | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 1 )  ∈  ℝ ) | 
						
							| 90 | 89 | recnd | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 1 )  ∈  ℂ ) | 
						
							| 91 | 90 | adantl | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑝 ‘ 1 )  ∈  ℂ ) | 
						
							| 92 | 88 91 | mulcld | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  ∈  ℂ ) | 
						
							| 93 | 87 86 | subcld | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ∈  ℂ ) | 
						
							| 94 | 52 | ad2antlr | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑌 ‘ 1 )  ∈  ℂ ) | 
						
							| 95 | 93 94 | mulcld | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  ∈  ℂ ) | 
						
							| 96 |  | addeq0 | ⊢ ( ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  ∈  ℂ  ∧  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  ∈  ℂ )  →  ( ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  =  0  ↔  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  - ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) ) | 
						
							| 97 | 92 95 96 | syl2anc | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  =  0  ↔  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  - ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) ) | 
						
							| 98 | 93 94 | mulneg1d | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( - ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  =  - ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 99 | 87 86 | negsubdi2d | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  - ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  =  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) ) ) | 
						
							| 100 | 99 | oveq1d | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( - ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 101 | 98 100 | eqtr3d | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  - ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 102 | 101 | eqeq2d | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  - ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  ↔  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) ) ) | 
						
							| 103 |  | necom | ⊢ ( ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 )  ↔  ( 𝑌 ‘ 2 )  ≠  ( 𝑋 ‘ 2 ) ) | 
						
							| 104 | 39 42 103 | 3imtr3i | ⊢ ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑌 ‘ 2 )  ≠  ( 𝑋 ‘ 2 ) ) | 
						
							| 105 | 104 | adantr | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑌 ‘ 2 )  ≠  ( 𝑋 ‘ 2 ) ) | 
						
							| 106 | 86 87 105 | subne0d | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ≠  0 ) | 
						
							| 107 | 91 94 88 106 | mulcand | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  ↔  ( 𝑝 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 108 | 102 107 | bitrd | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  - ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) )  ↔  ( 𝑝 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 109 | 85 97 108 | 3bitrd | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  −  ( 𝑌 ‘ 2 ) )  ·  ( 𝑌 ‘ 1 ) ) )  ↔  ( 𝑝 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 110 | 83 109 | bitrd | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 0  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑌 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝑝 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 111 |  | simpl | ⊢ ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) | 
						
							| 112 | 111 | eqcomd | ⊢ ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑌 ‘ 1 )  =  ( 𝑋 ‘ 1 ) ) | 
						
							| 113 | 112 | adantr | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑌 ‘ 1 )  =  ( 𝑋 ‘ 1 ) ) | 
						
							| 114 | 113 | eqeq2d | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑝 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ↔  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) ) ) | 
						
							| 115 | 70 110 114 | 3bitrrd | ⊢ ( ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) ) | 
						
							| 116 | 115 | rabbidva | ⊢ ( ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) }  =  { 𝑝  ∈  𝑃  ∣  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) } ) | 
						
							| 117 | 42 116 | sylbi | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) }  =  { 𝑝  ∈  𝑃  ∣  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) } ) | 
						
							| 118 | 41 117 | eqtrd | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) } ) | 
						
							| 119 | 1 2 3 4 | rrx2line | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) } ) | 
						
							| 120 | 119 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) } ) | 
						
							| 121 |  | df-ne | ⊢ ( ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 )  ↔  ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) | 
						
							| 122 | 89 | ad2antlr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑝 ‘ 1 )  ∈  ℝ ) | 
						
							| 123 | 1 3 | rrx2pxel | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 1 )  ∈  ℝ ) | 
						
							| 124 | 123 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 ‘ 1 )  ∈  ℝ ) | 
						
							| 125 | 124 | ad2antrr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 1 )  ∈  ℝ ) | 
						
							| 126 | 50 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌 ‘ 1 )  ∈  ℝ ) | 
						
							| 127 | 126 | ad2antrr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑌 ‘ 1 )  ∈  ℝ ) | 
						
							| 128 |  | simpr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) ) | 
						
							| 129 | 57 | ad2antlr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑝 ‘ 2 )  ∈  ℝ ) | 
						
							| 130 | 76 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 131 | 130 | ad2antrr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 132 | 71 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌 ‘ 2 )  ∈  ℝ ) | 
						
							| 133 | 132 | ad2antrr | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑌 ‘ 2 )  ∈  ℝ ) | 
						
							| 134 | 122 125 127 128 129 131 133 | affinecomb2 | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) ) ) ) | 
						
							| 135 | 5 | eqcomi | ⊢ ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  =  𝐴 | 
						
							| 136 | 135 | oveq1i | ⊢ ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( 𝐴  ·  ( 𝑝 ‘ 2 ) ) | 
						
							| 137 | 6 | eqcomi | ⊢ ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  =  𝐵 | 
						
							| 138 | 137 | oveq1i | ⊢ ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  =  ( 𝐵  ·  ( 𝑝 ‘ 1 ) ) | 
						
							| 139 | 7 | eqcomi | ⊢ ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) )  =  𝐶 | 
						
							| 140 | 138 139 | oveq12i | ⊢ ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) | 
						
							| 141 | 136 140 | eqeq12i | ⊢ ( ( ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) )  ·  ( 𝑝 ‘ 2 ) )  =  ( ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  ·  ( 𝑝 ‘ 1 ) )  +  ( ( ( 𝑋 ‘ 2 )  ·  ( 𝑌 ‘ 1 ) )  −  ( ( 𝑋 ‘ 1 )  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) | 
						
							| 142 | 134 141 | bitrdi | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) ) | 
						
							| 143 | 142 | expcom | ⊢ ( ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 )  →  ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) ) ) | 
						
							| 144 | 121 143 | sylbir | ⊢ ( ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) ) ) | 
						
							| 145 | 144 | expd | ⊢ ( ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  →  ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑝  ∈  𝑃  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) ) ) ) | 
						
							| 146 | 145 | impcom | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑝  ∈  𝑃  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) ) ) | 
						
							| 147 | 146 | imp | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) ) ) | 
						
							| 148 | 147 | rabbidva | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) }  =  { 𝑝  ∈  𝑃  ∣  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) } ) | 
						
							| 149 | 120 148 | eqtrd | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  ¬  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) } ) | 
						
							| 150 | 118 149 | pm2.61dan | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝐴  ·  ( 𝑝 ‘ 2 ) )  =  ( ( 𝐵  ·  ( 𝑝 ‘ 1 ) )  +  𝐶 ) } ) |