| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2line.i | ⊢ 𝐼  =  { 1 ,  2 } | 
						
							| 2 |  | rrx2line.e | ⊢ 𝐸  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 3 |  | rrx2line.b | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 4 |  | rrx2line.l | ⊢ 𝐿  =  ( LineM ‘ 𝐸 ) | 
						
							| 5 |  | rrx2linesl.s | ⊢ 𝑆  =  ( ( ( 𝑌 ‘ 2 )  −  ( 𝑋 ‘ 2 ) )  /  ( ( 𝑌 ‘ 1 )  −  ( 𝑋 ‘ 1 ) ) ) | 
						
							| 6 |  | fveq1 | ⊢ ( 𝑋  =  𝑌  →  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) | 
						
							| 7 | 6 | necon3i | ⊢ ( ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 )  →  𝑋  ≠  𝑌 ) | 
						
							| 8 | 1 2 3 4 | rrx2line | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) } ) | 
						
							| 9 | 7 8 | syl3an3 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) } ) | 
						
							| 10 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 11 |  | prex | ⊢ { 1 ,  2 }  ∈  V | 
						
							| 12 | 1 11 | eqeltri | ⊢ 𝐼  ∈  V | 
						
							| 13 | 10 12 | elmap | ⊢ ( 𝑝  ∈  ( ℝ  ↑m  𝐼 )  ↔  𝑝 : 𝐼 ⟶ ℝ ) | 
						
							| 14 |  | id | ⊢ ( 𝑝 : 𝐼 ⟶ ℝ  →  𝑝 : 𝐼 ⟶ ℝ ) | 
						
							| 15 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 16 | 15 | prid1 | ⊢ 1  ∈  { 1 ,  2 } | 
						
							| 17 | 16 1 | eleqtrri | ⊢ 1  ∈  𝐼 | 
						
							| 18 | 17 | a1i | ⊢ ( 𝑝 : 𝐼 ⟶ ℝ  →  1  ∈  𝐼 ) | 
						
							| 19 | 14 18 | ffvelcdmd | ⊢ ( 𝑝 : 𝐼 ⟶ ℝ  →  ( 𝑝 ‘ 1 )  ∈  ℝ ) | 
						
							| 20 | 13 19 | sylbi | ⊢ ( 𝑝  ∈  ( ℝ  ↑m  𝐼 )  →  ( 𝑝 ‘ 1 )  ∈  ℝ ) | 
						
							| 21 | 20 3 | eleq2s | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 1 )  ∈  ℝ ) | 
						
							| 22 | 21 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑝 ‘ 1 )  ∈  ℝ ) | 
						
							| 23 | 10 12 | elmap | ⊢ ( 𝑋  ∈  ( ℝ  ↑m  𝐼 )  ↔  𝑋 : 𝐼 ⟶ ℝ ) | 
						
							| 24 |  | id | ⊢ ( 𝑋 : 𝐼 ⟶ ℝ  →  𝑋 : 𝐼 ⟶ ℝ ) | 
						
							| 25 | 17 | a1i | ⊢ ( 𝑋 : 𝐼 ⟶ ℝ  →  1  ∈  𝐼 ) | 
						
							| 26 | 24 25 | ffvelcdmd | ⊢ ( 𝑋 : 𝐼 ⟶ ℝ  →  ( 𝑋 ‘ 1 )  ∈  ℝ ) | 
						
							| 27 | 23 26 | sylbi | ⊢ ( 𝑋  ∈  ( ℝ  ↑m  𝐼 )  →  ( 𝑋 ‘ 1 )  ∈  ℝ ) | 
						
							| 28 | 27 3 | eleq2s | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 1 )  ∈  ℝ ) | 
						
							| 29 | 28 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 1 )  ∈  ℝ ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑋 ‘ 1 )  ∈  ℝ ) | 
						
							| 31 | 10 12 | elmap | ⊢ ( 𝑌  ∈  ( ℝ  ↑m  𝐼 )  ↔  𝑌 : 𝐼 ⟶ ℝ ) | 
						
							| 32 |  | id | ⊢ ( 𝑌 : 𝐼 ⟶ ℝ  →  𝑌 : 𝐼 ⟶ ℝ ) | 
						
							| 33 | 17 | a1i | ⊢ ( 𝑌 : 𝐼 ⟶ ℝ  →  1  ∈  𝐼 ) | 
						
							| 34 | 32 33 | ffvelcdmd | ⊢ ( 𝑌 : 𝐼 ⟶ ℝ  →  ( 𝑌 ‘ 1 )  ∈  ℝ ) | 
						
							| 35 | 31 34 | sylbi | ⊢ ( 𝑌  ∈  ( ℝ  ↑m  𝐼 )  →  ( 𝑌 ‘ 1 )  ∈  ℝ ) | 
						
							| 36 | 35 3 | eleq2s | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 1 )  ∈  ℝ ) | 
						
							| 37 | 36 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑌 ‘ 1 )  ∈  ℝ ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑌 ‘ 1 )  ∈  ℝ ) | 
						
							| 39 |  | simpl3 | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) ) | 
						
							| 40 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 41 | 40 | prid2 | ⊢ 2  ∈  { 1 ,  2 } | 
						
							| 42 | 41 1 | eleqtrri | ⊢ 2  ∈  𝐼 | 
						
							| 43 | 42 | a1i | ⊢ ( 𝑝 : 𝐼 ⟶ ℝ  →  2  ∈  𝐼 ) | 
						
							| 44 | 14 43 | ffvelcdmd | ⊢ ( 𝑝 : 𝐼 ⟶ ℝ  →  ( 𝑝 ‘ 2 )  ∈  ℝ ) | 
						
							| 45 | 13 44 | sylbi | ⊢ ( 𝑝  ∈  ( ℝ  ↑m  𝐼 )  →  ( 𝑝 ‘ 2 )  ∈  ℝ ) | 
						
							| 46 | 45 3 | eleq2s | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 2 )  ∈  ℝ ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑝 ‘ 2 )  ∈  ℝ ) | 
						
							| 48 | 42 | a1i | ⊢ ( 𝑋 : 𝐼 ⟶ ℝ  →  2  ∈  𝐼 ) | 
						
							| 49 | 24 48 | ffvelcdmd | ⊢ ( 𝑋 : 𝐼 ⟶ ℝ  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 50 | 23 49 | sylbi | ⊢ ( 𝑋  ∈  ( ℝ  ↑m  𝐼 )  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 51 | 50 3 | eleq2s | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 52 | 51 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑋 ‘ 2 )  ∈  ℝ ) | 
						
							| 54 | 3 | eleq2i | ⊢ ( 𝑌  ∈  𝑃  ↔  𝑌  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 55 | 54 31 | bitri | ⊢ ( 𝑌  ∈  𝑃  ↔  𝑌 : 𝐼 ⟶ ℝ ) | 
						
							| 56 | 42 | a1i | ⊢ ( 𝑌 : 𝐼 ⟶ ℝ  →  2  ∈  𝐼 ) | 
						
							| 57 | 32 56 | ffvelcdmd | ⊢ ( 𝑌 : 𝐼 ⟶ ℝ  →  ( 𝑌 ‘ 2 )  ∈  ℝ ) | 
						
							| 58 | 55 57 | sylbi | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝑌 ‘ 2 )  ∈  ℝ ) | 
						
							| 59 | 58 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑌 ‘ 2 )  ∈  ℝ ) | 
						
							| 60 | 59 | adantr | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑌 ‘ 2 )  ∈  ℝ ) | 
						
							| 61 | 22 30 38 39 47 53 60 5 | affinecomb1 | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) )  ↔  ( 𝑝 ‘ 2 )  =  ( ( 𝑆  ·  ( ( 𝑝 ‘ 1 )  −  ( 𝑋 ‘ 1 ) ) )  +  ( 𝑋 ‘ 2 ) ) ) ) | 
						
							| 62 | 61 | rabbidva | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) }  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 2 )  =  ( ( 𝑆  ·  ( ( 𝑝 ‘ 1 )  −  ( 𝑋 ‘ 1 ) ) )  +  ( 𝑋 ‘ 2 ) ) } ) | 
						
							| 63 | 9 62 | eqtrd | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( 𝑋 ‘ 1 )  ≠  ( 𝑌 ‘ 1 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 2 )  =  ( ( 𝑆  ·  ( ( 𝑝 ‘ 1 )  −  ( 𝑋 ‘ 1 ) ) )  +  ( 𝑋 ‘ 2 ) ) } ) |