Step |
Hyp |
Ref |
Expression |
1 |
|
rrx2line.i |
⊢ 𝐼 = { 1 , 2 } |
2 |
|
rrx2line.e |
⊢ 𝐸 = ( ℝ^ ‘ 𝐼 ) |
3 |
|
rrx2line.b |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
4 |
|
rrx2line.l |
⊢ 𝐿 = ( LineM ‘ 𝐸 ) |
5 |
|
rrx2linesl.s |
⊢ 𝑆 = ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) / ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ) |
6 |
|
fveq1 |
⊢ ( 𝑋 = 𝑌 → ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ) |
7 |
6
|
necon3i |
⊢ ( ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) → 𝑋 ≠ 𝑌 ) |
8 |
1 2 3 4
|
rrx2line |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ ( ( 𝑝 ‘ 1 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 1 ) ) + ( 𝑡 · ( 𝑌 ‘ 1 ) ) ) ∧ ( 𝑝 ‘ 2 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 2 ) ) + ( 𝑡 · ( 𝑌 ‘ 2 ) ) ) ) } ) |
9 |
7 8
|
syl3an3 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ ( ( 𝑝 ‘ 1 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 1 ) ) + ( 𝑡 · ( 𝑌 ‘ 1 ) ) ) ∧ ( 𝑝 ‘ 2 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 2 ) ) + ( 𝑡 · ( 𝑌 ‘ 2 ) ) ) ) } ) |
10 |
|
reex |
⊢ ℝ ∈ V |
11 |
|
prex |
⊢ { 1 , 2 } ∈ V |
12 |
1 11
|
eqeltri |
⊢ 𝐼 ∈ V |
13 |
10 12
|
elmap |
⊢ ( 𝑝 ∈ ( ℝ ↑m 𝐼 ) ↔ 𝑝 : 𝐼 ⟶ ℝ ) |
14 |
|
id |
⊢ ( 𝑝 : 𝐼 ⟶ ℝ → 𝑝 : 𝐼 ⟶ ℝ ) |
15 |
|
1ex |
⊢ 1 ∈ V |
16 |
15
|
prid1 |
⊢ 1 ∈ { 1 , 2 } |
17 |
16 1
|
eleqtrri |
⊢ 1 ∈ 𝐼 |
18 |
17
|
a1i |
⊢ ( 𝑝 : 𝐼 ⟶ ℝ → 1 ∈ 𝐼 ) |
19 |
14 18
|
ffvelrnd |
⊢ ( 𝑝 : 𝐼 ⟶ ℝ → ( 𝑝 ‘ 1 ) ∈ ℝ ) |
20 |
13 19
|
sylbi |
⊢ ( 𝑝 ∈ ( ℝ ↑m 𝐼 ) → ( 𝑝 ‘ 1 ) ∈ ℝ ) |
21 |
20 3
|
eleq2s |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 1 ) ∈ ℝ ) |
22 |
21
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑝 ‘ 1 ) ∈ ℝ ) |
23 |
10 12
|
elmap |
⊢ ( 𝑋 ∈ ( ℝ ↑m 𝐼 ) ↔ 𝑋 : 𝐼 ⟶ ℝ ) |
24 |
|
id |
⊢ ( 𝑋 : 𝐼 ⟶ ℝ → 𝑋 : 𝐼 ⟶ ℝ ) |
25 |
17
|
a1i |
⊢ ( 𝑋 : 𝐼 ⟶ ℝ → 1 ∈ 𝐼 ) |
26 |
24 25
|
ffvelrnd |
⊢ ( 𝑋 : 𝐼 ⟶ ℝ → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
27 |
23 26
|
sylbi |
⊢ ( 𝑋 ∈ ( ℝ ↑m 𝐼 ) → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
28 |
27 3
|
eleq2s |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
29 |
28
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑋 ‘ 1 ) ∈ ℝ ) |
31 |
10 12
|
elmap |
⊢ ( 𝑌 ∈ ( ℝ ↑m 𝐼 ) ↔ 𝑌 : 𝐼 ⟶ ℝ ) |
32 |
|
id |
⊢ ( 𝑌 : 𝐼 ⟶ ℝ → 𝑌 : 𝐼 ⟶ ℝ ) |
33 |
17
|
a1i |
⊢ ( 𝑌 : 𝐼 ⟶ ℝ → 1 ∈ 𝐼 ) |
34 |
32 33
|
ffvelrnd |
⊢ ( 𝑌 : 𝐼 ⟶ ℝ → ( 𝑌 ‘ 1 ) ∈ ℝ ) |
35 |
31 34
|
sylbi |
⊢ ( 𝑌 ∈ ( ℝ ↑m 𝐼 ) → ( 𝑌 ‘ 1 ) ∈ ℝ ) |
36 |
35 3
|
eleq2s |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑌 ‘ 1 ) ∈ ℝ ) |
37 |
36
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → ( 𝑌 ‘ 1 ) ∈ ℝ ) |
38 |
37
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑌 ‘ 1 ) ∈ ℝ ) |
39 |
|
simpl3 |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) |
40 |
|
2ex |
⊢ 2 ∈ V |
41 |
40
|
prid2 |
⊢ 2 ∈ { 1 , 2 } |
42 |
41 1
|
eleqtrri |
⊢ 2 ∈ 𝐼 |
43 |
42
|
a1i |
⊢ ( 𝑝 : 𝐼 ⟶ ℝ → 2 ∈ 𝐼 ) |
44 |
14 43
|
ffvelrnd |
⊢ ( 𝑝 : 𝐼 ⟶ ℝ → ( 𝑝 ‘ 2 ) ∈ ℝ ) |
45 |
13 44
|
sylbi |
⊢ ( 𝑝 ∈ ( ℝ ↑m 𝐼 ) → ( 𝑝 ‘ 2 ) ∈ ℝ ) |
46 |
45 3
|
eleq2s |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 2 ) ∈ ℝ ) |
47 |
46
|
adantl |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑝 ‘ 2 ) ∈ ℝ ) |
48 |
42
|
a1i |
⊢ ( 𝑋 : 𝐼 ⟶ ℝ → 2 ∈ 𝐼 ) |
49 |
24 48
|
ffvelrnd |
⊢ ( 𝑋 : 𝐼 ⟶ ℝ → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
50 |
23 49
|
sylbi |
⊢ ( 𝑋 ∈ ( ℝ ↑m 𝐼 ) → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
51 |
50 3
|
eleq2s |
⊢ ( 𝑋 ∈ 𝑃 → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
52 |
51
|
3ad2ant1 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
53 |
52
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑋 ‘ 2 ) ∈ ℝ ) |
54 |
3
|
eleq2i |
⊢ ( 𝑌 ∈ 𝑃 ↔ 𝑌 ∈ ( ℝ ↑m 𝐼 ) ) |
55 |
54 31
|
bitri |
⊢ ( 𝑌 ∈ 𝑃 ↔ 𝑌 : 𝐼 ⟶ ℝ ) |
56 |
42
|
a1i |
⊢ ( 𝑌 : 𝐼 ⟶ ℝ → 2 ∈ 𝐼 ) |
57 |
32 56
|
ffvelrnd |
⊢ ( 𝑌 : 𝐼 ⟶ ℝ → ( 𝑌 ‘ 2 ) ∈ ℝ ) |
58 |
55 57
|
sylbi |
⊢ ( 𝑌 ∈ 𝑃 → ( 𝑌 ‘ 2 ) ∈ ℝ ) |
59 |
58
|
3ad2ant2 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → ( 𝑌 ‘ 2 ) ∈ ℝ ) |
60 |
59
|
adantr |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑌 ‘ 2 ) ∈ ℝ ) |
61 |
22 30 38 39 47 53 60 5
|
affinecomb1 |
⊢ ( ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ∃ 𝑡 ∈ ℝ ( ( 𝑝 ‘ 1 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 1 ) ) + ( 𝑡 · ( 𝑌 ‘ 1 ) ) ) ∧ ( 𝑝 ‘ 2 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 2 ) ) + ( 𝑡 · ( 𝑌 ‘ 2 ) ) ) ) ↔ ( 𝑝 ‘ 2 ) = ( ( 𝑆 · ( ( 𝑝 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ) + ( 𝑋 ‘ 2 ) ) ) ) |
62 |
61
|
rabbidva |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ ( ( 𝑝 ‘ 1 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 1 ) ) + ( 𝑡 · ( 𝑌 ‘ 1 ) ) ) ∧ ( 𝑝 ‘ 2 ) = ( ( ( 1 − 𝑡 ) · ( 𝑋 ‘ 2 ) ) + ( 𝑡 · ( 𝑌 ‘ 2 ) ) ) ) } = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 2 ) = ( ( 𝑆 · ( ( 𝑝 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ) + ( 𝑋 ‘ 2 ) ) } ) |
63 |
9 62
|
eqtrd |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( 𝑋 ‘ 1 ) ≠ ( 𝑌 ‘ 1 ) ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 2 ) = ( ( 𝑆 · ( ( 𝑝 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) ) + ( 𝑋 ‘ 2 ) ) } ) |