| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrx2line.i | ⊢ 𝐼  =  { 1 ,  2 } | 
						
							| 2 |  | rrx2line.e | ⊢ 𝐸  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 3 |  | rrx2line.b | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 4 |  | rrx2line.l | ⊢ 𝐿  =  ( LineM ‘ 𝐸 ) | 
						
							| 5 |  | prfi | ⊢ { 1 ,  2 }  ∈  Fin | 
						
							| 6 | 1 5 | eqeltri | ⊢ 𝐼  ∈  Fin | 
						
							| 7 | 2 3 4 | rrxlinec | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ∀ 𝑖  ∈  𝐼 ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) ) } ) | 
						
							| 8 | 6 7 | mpan | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ∀ 𝑖  ∈  𝐼 ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) ) } ) | 
						
							| 9 | 1 | a1i | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  𝑡  ∈  ℝ )  →  𝐼  =  { 1 ,  2 } ) | 
						
							| 10 | 9 | raleqdv | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  𝑡  ∈  ℝ )  →  ( ∀ 𝑖  ∈  𝐼 ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) )  ↔  ∀ 𝑖  ∈  { 1 ,  2 } ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) ) ) ) | 
						
							| 11 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 12 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑖  =  1  →  ( 𝑝 ‘ 𝑖 )  =  ( 𝑝 ‘ 1 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑖  =  1  →  ( 𝑋 ‘ 𝑖 )  =  ( 𝑋 ‘ 1 ) ) | 
						
							| 15 | 14 | oveq2d | ⊢ ( 𝑖  =  1  →  ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  =  ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( 𝑖  =  1  →  ( 𝑌 ‘ 𝑖 )  =  ( 𝑌 ‘ 1 ) ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( 𝑖  =  1  →  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) )  =  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) ) | 
						
							| 18 | 15 17 | oveq12d | ⊢ ( 𝑖  =  1  →  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) ) ) | 
						
							| 19 | 13 18 | eqeq12d | ⊢ ( 𝑖  =  1  →  ( ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) )  ↔  ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) ) ) ) | 
						
							| 20 |  | fveq2 | ⊢ ( 𝑖  =  2  →  ( 𝑝 ‘ 𝑖 )  =  ( 𝑝 ‘ 2 ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( 𝑖  =  2  →  ( 𝑋 ‘ 𝑖 )  =  ( 𝑋 ‘ 2 ) ) | 
						
							| 22 | 21 | oveq2d | ⊢ ( 𝑖  =  2  →  ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  =  ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) ) ) | 
						
							| 23 |  | fveq2 | ⊢ ( 𝑖  =  2  →  ( 𝑌 ‘ 𝑖 )  =  ( 𝑌 ‘ 2 ) ) | 
						
							| 24 | 23 | oveq2d | ⊢ ( 𝑖  =  2  →  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) )  =  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 25 | 22 24 | oveq12d | ⊢ ( 𝑖  =  2  →  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 26 | 20 25 | eqeq12d | ⊢ ( 𝑖  =  2  →  ( ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) )  ↔  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) ) | 
						
							| 27 | 11 12 19 26 | ralpr | ⊢ ( ∀ 𝑖  ∈  { 1 ,  2 } ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) )  ↔  ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) ) | 
						
							| 28 | 10 27 | bitrdi | ⊢ ( ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  ∧  𝑡  ∈  ℝ )  →  ( ∀ 𝑖  ∈  𝐼 ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) )  ↔  ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) ) ) | 
						
							| 29 | 28 | rexbidva | ⊢ ( ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  ∧  𝑝  ∈  𝑃 )  →  ( ∃ 𝑡  ∈  ℝ ∀ 𝑖  ∈  𝐼 ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) )  ↔  ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) ) ) | 
						
							| 30 | 29 | rabbidva | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ∀ 𝑖  ∈  𝐼 ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) ) }  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) } ) | 
						
							| 31 | 8 30 | eqtrd | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ( ( 𝑝 ‘ 1 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 1 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 1 ) ) )  ∧  ( 𝑝 ‘ 2 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 2 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 2 ) ) ) ) } ) |