| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxlinesc.e | ⊢ 𝐸  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 2 |  | rrxlinesc.p | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 3 |  | rrxlinesc.l | ⊢ 𝐿  =  ( LineM ‘ 𝐸 ) | 
						
							| 4 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐸 )  =  (  ·𝑠  ‘ 𝐸 ) | 
						
							| 5 |  | eqid | ⊢ ( +g ‘ 𝐸 )  =  ( +g ‘ 𝐸 ) | 
						
							| 6 | 1 2 3 4 5 | rrxline | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 ) (  ·𝑠  ‘ 𝐸 ) 𝑋 ) ( +g ‘ 𝐸 ) ( 𝑡 (  ·𝑠  ‘ 𝐸 ) 𝑌 ) ) } ) | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐸 )  =  ( Base ‘ 𝐸 ) | 
						
							| 8 |  | simplll | ⊢ ( ( ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  ∧  𝑡  ∈  ℝ )  →  𝐼  ∈  Fin ) | 
						
							| 9 |  | 1red | ⊢ ( ( ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  ∧  𝑡  ∈  ℝ )  →  1  ∈  ℝ ) | 
						
							| 10 |  | simpr | ⊢ ( ( ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  ∧  𝑡  ∈  ℝ )  →  𝑡  ∈  ℝ ) | 
						
							| 11 | 9 10 | resubcld | ⊢ ( ( ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  ∧  𝑡  ∈  ℝ )  →  ( 1  −  𝑡 )  ∈  ℝ ) | 
						
							| 12 |  | id | ⊢ ( 𝐼  ∈  Fin  →  𝐼  ∈  Fin ) | 
						
							| 13 | 12 1 7 | rrxbasefi | ⊢ ( 𝐼  ∈  Fin  →  ( Base ‘ 𝐸 )  =  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 14 | 2 13 | eqtr4id | ⊢ ( 𝐼  ∈  Fin  →  𝑃  =  ( Base ‘ 𝐸 ) ) | 
						
							| 15 | 14 | eleq2d | ⊢ ( 𝐼  ∈  Fin  →  ( 𝑋  ∈  𝑃  ↔  𝑋  ∈  ( Base ‘ 𝐸 ) ) ) | 
						
							| 16 | 15 | biimpcd | ⊢ ( 𝑋  ∈  𝑃  →  ( 𝐼  ∈  Fin  →  𝑋  ∈  ( Base ‘ 𝐸 ) ) ) | 
						
							| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝐼  ∈  Fin  →  𝑋  ∈  ( Base ‘ 𝐸 ) ) ) | 
						
							| 18 | 17 | impcom | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  𝑋  ∈  ( Base ‘ 𝐸 ) ) | 
						
							| 19 | 18 | ad2antrr | ⊢ ( ( ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  ∧  𝑡  ∈  ℝ )  →  𝑋  ∈  ( Base ‘ 𝐸 ) ) | 
						
							| 20 | 14 | eleq2d | ⊢ ( 𝐼  ∈  Fin  →  ( 𝑌  ∈  𝑃  ↔  𝑌  ∈  ( Base ‘ 𝐸 ) ) ) | 
						
							| 21 | 20 | biimpcd | ⊢ ( 𝑌  ∈  𝑃  →  ( 𝐼  ∈  Fin  →  𝑌  ∈  ( Base ‘ 𝐸 ) ) ) | 
						
							| 22 | 21 | 3ad2ant2 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝐼  ∈  Fin  →  𝑌  ∈  ( Base ‘ 𝐸 ) ) ) | 
						
							| 23 | 22 | impcom | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  𝑌  ∈  ( Base ‘ 𝐸 ) ) | 
						
							| 24 | 23 | ad2antrr | ⊢ ( ( ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  ∧  𝑡  ∈  ℝ )  →  𝑌  ∈  ( Base ‘ 𝐸 ) ) | 
						
							| 25 | 14 | adantr | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  𝑃  =  ( Base ‘ 𝐸 ) ) | 
						
							| 26 | 25 | eleq2d | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑝  ∈  𝑃  ↔  𝑝  ∈  ( Base ‘ 𝐸 ) ) ) | 
						
							| 27 | 26 | biimpa | ⊢ ( ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  𝑝  ∈  ( Base ‘ 𝐸 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  ∧  𝑡  ∈  ℝ )  →  𝑝  ∈  ( Base ‘ 𝐸 ) ) | 
						
							| 29 | 1 7 4 8 11 19 24 28 5 10 | rrxplusgvscavalb | ⊢ ( ( ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  ∧  𝑡  ∈  ℝ )  →  ( 𝑝  =  ( ( ( 1  −  𝑡 ) (  ·𝑠  ‘ 𝐸 ) 𝑋 ) ( +g ‘ 𝐸 ) ( 𝑡 (  ·𝑠  ‘ 𝐸 ) 𝑌 ) )  ↔  ∀ 𝑖  ∈  𝐼 ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) ) ) ) | 
						
							| 30 | 29 | rexbidva | ⊢ ( ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 ) (  ·𝑠  ‘ 𝐸 ) 𝑋 ) ( +g ‘ 𝐸 ) ( 𝑡 (  ·𝑠  ‘ 𝐸 ) 𝑌 ) )  ↔  ∃ 𝑡  ∈  ℝ ∀ 𝑖  ∈  𝐼 ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) ) ) ) | 
						
							| 31 | 30 | rabbidva | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 ) (  ·𝑠  ‘ 𝐸 ) 𝑋 ) ( +g ‘ 𝐸 ) ( 𝑡 (  ·𝑠  ‘ 𝐸 ) 𝑌 ) ) }  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ∀ 𝑖  ∈  𝐼 ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) ) } ) | 
						
							| 32 | 6 31 | eqtrd | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ ∀ 𝑖  ∈  𝐼 ( 𝑝 ‘ 𝑖 )  =  ( ( ( 1  −  𝑡 )  ·  ( 𝑋 ‘ 𝑖 ) )  +  ( 𝑡  ·  ( 𝑌 ‘ 𝑖 ) ) ) } ) |