Metamath Proof Explorer


Theorem rrxplusgvscavalb

Description: The result of the addition combined with scalar multiplication in a generalized Euclidean space is defined by its coordinate-wise operations. (Contributed by AV, 21-Jan-2023)

Ref Expression
Hypotheses rrxval.r 𝐻 = ( ℝ^ ‘ 𝐼 )
rrxbase.b 𝐵 = ( Base ‘ 𝐻 )
rrxplusgvscavalb.r = ( ·𝑠𝐻 )
rrxplusgvscavalb.i ( 𝜑𝐼𝑉 )
rrxplusgvscavalb.a ( 𝜑𝐴 ∈ ℝ )
rrxplusgvscavalb.x ( 𝜑𝑋𝐵 )
rrxplusgvscavalb.y ( 𝜑𝑌𝐵 )
rrxplusgvscavalb.z ( 𝜑𝑍𝐵 )
rrxplusgvscavalb.p = ( +g𝐻 )
rrxplusgvscavalb.c ( 𝜑𝐶 ∈ ℝ )
Assertion rrxplusgvscavalb ( 𝜑 → ( 𝑍 = ( ( 𝐴 𝑋 ) ( 𝐶 𝑌 ) ) ↔ ∀ 𝑖𝐼 ( 𝑍𝑖 ) = ( ( 𝐴 · ( 𝑋𝑖 ) ) + ( 𝐶 · ( 𝑌𝑖 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 rrxval.r 𝐻 = ( ℝ^ ‘ 𝐼 )
2 rrxbase.b 𝐵 = ( Base ‘ 𝐻 )
3 rrxplusgvscavalb.r = ( ·𝑠𝐻 )
4 rrxplusgvscavalb.i ( 𝜑𝐼𝑉 )
5 rrxplusgvscavalb.a ( 𝜑𝐴 ∈ ℝ )
6 rrxplusgvscavalb.x ( 𝜑𝑋𝐵 )
7 rrxplusgvscavalb.y ( 𝜑𝑌𝐵 )
8 rrxplusgvscavalb.z ( 𝜑𝑍𝐵 )
9 rrxplusgvscavalb.p = ( +g𝐻 )
10 rrxplusgvscavalb.c ( 𝜑𝐶 ∈ ℝ )
11 1 rrxval ( 𝐼𝑉𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
12 4 11 syl ( 𝜑𝐻 = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
13 12 fveq2d ( 𝜑 → ( +g𝐻 ) = ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
14 9 13 eqtrid ( 𝜑 = ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
15 12 fveq2d ( 𝜑 → ( ·𝑠𝐻 ) = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
16 3 15 eqtrid ( 𝜑 = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
17 16 oveqd ( 𝜑 → ( 𝐴 𝑋 ) = ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) )
18 16 oveqd ( 𝜑 → ( 𝐶 𝑌 ) = ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) )
19 14 17 18 oveq123d ( 𝜑 → ( ( 𝐴 𝑋 ) ( 𝐶 𝑌 ) ) = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) )
20 19 eqeq2d ( 𝜑 → ( 𝑍 = ( ( 𝐴 𝑋 ) ( 𝐶 𝑌 ) ) ↔ 𝑍 = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) ) )
21 eqid ( ℝfld freeLMod 𝐼 ) = ( ℝfld freeLMod 𝐼 )
22 eqid ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( ℝfld freeLMod 𝐼 ) )
23 12 fveq2d ( 𝜑 → ( Base ‘ 𝐻 ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) )
24 eqid ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) )
25 24 22 tcphbas ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) = ( Base ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
26 23 2 25 3eqtr4g ( 𝜑𝐵 = ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) )
27 6 26 eleqtrd ( 𝜑𝑋 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) )
28 8 26 eleqtrd ( 𝜑𝑍 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) )
29 recrng fld ∈ *-Ring
30 srngring ( ℝfld ∈ *-Ring → ℝfld ∈ Ring )
31 29 30 mp1i ( 𝜑 → ℝfld ∈ Ring )
32 rebase ℝ = ( Base ‘ ℝfld )
33 eqid ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) )
34 24 33 tcphvsca ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) ) = ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
35 34 eqcomi ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( ·𝑠 ‘ ( ℝfld freeLMod 𝐼 ) )
36 remulr · = ( .r ‘ ℝfld )
37 7 26 eleqtrd ( 𝜑𝑌 ∈ ( Base ‘ ( ℝfld freeLMod 𝐼 ) ) )
38 replusg + = ( +g ‘ ℝfld )
39 eqid ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( +g ‘ ( ℝfld freeLMod 𝐼 ) )
40 24 39 tchplusg ( +g ‘ ( ℝfld freeLMod 𝐼 ) ) = ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) )
41 40 eqcomi ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) = ( +g ‘ ( ℝfld freeLMod 𝐼 ) )
42 21 22 4 27 28 31 32 5 35 36 37 38 41 10 frlmvplusgscavalb ( 𝜑 → ( 𝑍 = ( ( 𝐴 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑋 ) ( +g ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) ( 𝐶 ( ·𝑠 ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝐼 ) ) ) 𝑌 ) ) ↔ ∀ 𝑖𝐼 ( 𝑍𝑖 ) = ( ( 𝐴 · ( 𝑋𝑖 ) ) + ( 𝐶 · ( 𝑌𝑖 ) ) ) ) )
43 20 42 bitrd ( 𝜑 → ( 𝑍 = ( ( 𝐴 𝑋 ) ( 𝐶 𝑌 ) ) ↔ ∀ 𝑖𝐼 ( 𝑍𝑖 ) = ( ( 𝐴 · ( 𝑋𝑖 ) ) + ( 𝐶 · ( 𝑌𝑖 ) ) ) ) )