| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxval.r |  |-  H = ( RR^ ` I ) | 
						
							| 2 |  | rrxbase.b |  |-  B = ( Base ` H ) | 
						
							| 3 |  | rrxplusgvscavalb.r |  |-  .xb = ( .s ` H ) | 
						
							| 4 |  | rrxplusgvscavalb.i |  |-  ( ph -> I e. V ) | 
						
							| 5 |  | rrxplusgvscavalb.a |  |-  ( ph -> A e. RR ) | 
						
							| 6 |  | rrxplusgvscavalb.x |  |-  ( ph -> X e. B ) | 
						
							| 7 |  | rrxplusgvscavalb.y |  |-  ( ph -> Y e. B ) | 
						
							| 8 |  | rrxplusgvscavalb.z |  |-  ( ph -> Z e. B ) | 
						
							| 9 |  | rrxplusgvscavalb.p |  |-  .+b = ( +g ` H ) | 
						
							| 10 |  | rrxplusgvscavalb.c |  |-  ( ph -> C e. RR ) | 
						
							| 11 | 1 | rrxval |  |-  ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 12 | 4 11 | syl |  |-  ( ph -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 13 | 12 | fveq2d |  |-  ( ph -> ( +g ` H ) = ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 14 | 9 13 | eqtrid |  |-  ( ph -> .+b = ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 15 | 12 | fveq2d |  |-  ( ph -> ( .s ` H ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 16 | 3 15 | eqtrid |  |-  ( ph -> .xb = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 17 | 16 | oveqd |  |-  ( ph -> ( A .xb X ) = ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ) | 
						
							| 18 | 16 | oveqd |  |-  ( ph -> ( C .xb Y ) = ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) | 
						
							| 19 | 14 17 18 | oveq123d |  |-  ( ph -> ( ( A .xb X ) .+b ( C .xb Y ) ) = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) ) | 
						
							| 20 | 19 | eqeq2d |  |-  ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> Z = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) ) ) | 
						
							| 21 |  | eqid |  |-  ( RRfld freeLMod I ) = ( RRfld freeLMod I ) | 
						
							| 22 |  | eqid |  |-  ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) | 
						
							| 23 | 12 | fveq2d |  |-  ( ph -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) | 
						
							| 24 |  | eqid |  |-  ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) | 
						
							| 25 | 24 22 | tcphbas |  |-  ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 26 | 23 2 25 | 3eqtr4g |  |-  ( ph -> B = ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 27 | 6 26 | eleqtrd |  |-  ( ph -> X e. ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 28 | 8 26 | eleqtrd |  |-  ( ph -> Z e. ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 29 |  | resrng |  |-  RRfld e. *Ring | 
						
							| 30 |  | srngring |  |-  ( RRfld e. *Ring -> RRfld e. Ring ) | 
						
							| 31 | 29 30 | mp1i |  |-  ( ph -> RRfld e. Ring ) | 
						
							| 32 |  | rebase |  |-  RR = ( Base ` RRfld ) | 
						
							| 33 |  | eqid |  |-  ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( RRfld freeLMod I ) ) | 
						
							| 34 | 24 33 | tcphvsca |  |-  ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 35 | 34 | eqcomi |  |-  ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( .s ` ( RRfld freeLMod I ) ) | 
						
							| 36 |  | remulr |  |-  x. = ( .r ` RRfld ) | 
						
							| 37 | 7 26 | eleqtrd |  |-  ( ph -> Y e. ( Base ` ( RRfld freeLMod I ) ) ) | 
						
							| 38 |  | replusg |  |-  + = ( +g ` RRfld ) | 
						
							| 39 |  | eqid |  |-  ( +g ` ( RRfld freeLMod I ) ) = ( +g ` ( RRfld freeLMod I ) ) | 
						
							| 40 | 24 39 | tchplusg |  |-  ( +g ` ( RRfld freeLMod I ) ) = ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) | 
						
							| 41 | 40 | eqcomi |  |-  ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( +g ` ( RRfld freeLMod I ) ) | 
						
							| 42 | 21 22 4 27 28 31 32 5 35 36 37 38 41 10 | frlmvplusgscavalb |  |-  ( ph -> ( Z = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) <-> A. i e. I ( Z ` i ) = ( ( A x. ( X ` i ) ) + ( C x. ( Y ` i ) ) ) ) ) | 
						
							| 43 | 20 42 | bitrd |  |-  ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> A. i e. I ( Z ` i ) = ( ( A x. ( X ` i ) ) + ( C x. ( Y ` i ) ) ) ) ) |