Step |
Hyp |
Ref |
Expression |
1 |
|
rrxval.r |
|- H = ( RR^ ` I ) |
2 |
|
rrxbase.b |
|- B = ( Base ` H ) |
3 |
|
rrxplusgvscavalb.r |
|- .xb = ( .s ` H ) |
4 |
|
rrxplusgvscavalb.i |
|- ( ph -> I e. V ) |
5 |
|
rrxplusgvscavalb.a |
|- ( ph -> A e. RR ) |
6 |
|
rrxplusgvscavalb.x |
|- ( ph -> X e. B ) |
7 |
|
rrxplusgvscavalb.y |
|- ( ph -> Y e. B ) |
8 |
|
rrxplusgvscavalb.z |
|- ( ph -> Z e. B ) |
9 |
|
rrxplusgvscavalb.p |
|- .+b = ( +g ` H ) |
10 |
|
rrxplusgvscavalb.c |
|- ( ph -> C e. RR ) |
11 |
1
|
rrxval |
|- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
12 |
4 11
|
syl |
|- ( ph -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
13 |
12
|
fveq2d |
|- ( ph -> ( +g ` H ) = ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
14 |
9 13
|
eqtrid |
|- ( ph -> .+b = ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
15 |
12
|
fveq2d |
|- ( ph -> ( .s ` H ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
16 |
3 15
|
eqtrid |
|- ( ph -> .xb = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
17 |
16
|
oveqd |
|- ( ph -> ( A .xb X ) = ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ) |
18 |
16
|
oveqd |
|- ( ph -> ( C .xb Y ) = ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) |
19 |
14 17 18
|
oveq123d |
|- ( ph -> ( ( A .xb X ) .+b ( C .xb Y ) ) = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) ) |
20 |
19
|
eqeq2d |
|- ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> Z = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) ) ) |
21 |
|
eqid |
|- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
22 |
|
eqid |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
23 |
12
|
fveq2d |
|- ( ph -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
24 |
|
eqid |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
25 |
24 22
|
tcphbas |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
26 |
23 2 25
|
3eqtr4g |
|- ( ph -> B = ( Base ` ( RRfld freeLMod I ) ) ) |
27 |
6 26
|
eleqtrd |
|- ( ph -> X e. ( Base ` ( RRfld freeLMod I ) ) ) |
28 |
8 26
|
eleqtrd |
|- ( ph -> Z e. ( Base ` ( RRfld freeLMod I ) ) ) |
29 |
|
recrng |
|- RRfld e. *Ring |
30 |
|
srngring |
|- ( RRfld e. *Ring -> RRfld e. Ring ) |
31 |
29 30
|
mp1i |
|- ( ph -> RRfld e. Ring ) |
32 |
|
rebase |
|- RR = ( Base ` RRfld ) |
33 |
|
eqid |
|- ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( RRfld freeLMod I ) ) |
34 |
24 33
|
tcphvsca |
|- ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
35 |
34
|
eqcomi |
|- ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( .s ` ( RRfld freeLMod I ) ) |
36 |
|
remulr |
|- x. = ( .r ` RRfld ) |
37 |
7 26
|
eleqtrd |
|- ( ph -> Y e. ( Base ` ( RRfld freeLMod I ) ) ) |
38 |
|
replusg |
|- + = ( +g ` RRfld ) |
39 |
|
eqid |
|- ( +g ` ( RRfld freeLMod I ) ) = ( +g ` ( RRfld freeLMod I ) ) |
40 |
24 39
|
tchplusg |
|- ( +g ` ( RRfld freeLMod I ) ) = ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
41 |
40
|
eqcomi |
|- ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( +g ` ( RRfld freeLMod I ) ) |
42 |
21 22 4 27 28 31 32 5 35 36 37 38 41 10
|
frlmvplusgscavalb |
|- ( ph -> ( Z = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) <-> A. i e. I ( Z ` i ) = ( ( A x. ( X ` i ) ) + ( C x. ( Y ` i ) ) ) ) ) |
43 |
20 42
|
bitrd |
|- ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> A. i e. I ( Z ` i ) = ( ( A x. ( X ` i ) ) + ( C x. ( Y ` i ) ) ) ) ) |