| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrxval.r |
|- H = ( RR^ ` I ) |
| 2 |
|
rrxbase.b |
|- B = ( Base ` H ) |
| 3 |
|
rrxplusgvscavalb.r |
|- .xb = ( .s ` H ) |
| 4 |
|
rrxplusgvscavalb.i |
|- ( ph -> I e. V ) |
| 5 |
|
rrxplusgvscavalb.a |
|- ( ph -> A e. RR ) |
| 6 |
|
rrxplusgvscavalb.x |
|- ( ph -> X e. B ) |
| 7 |
|
rrxplusgvscavalb.y |
|- ( ph -> Y e. B ) |
| 8 |
|
rrxplusgvscavalb.z |
|- ( ph -> Z e. B ) |
| 9 |
|
rrxplusgvscavalb.p |
|- .+b = ( +g ` H ) |
| 10 |
|
rrxplusgvscavalb.c |
|- ( ph -> C e. RR ) |
| 11 |
1
|
rrxval |
|- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 12 |
4 11
|
syl |
|- ( ph -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 13 |
12
|
fveq2d |
|- ( ph -> ( +g ` H ) = ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 14 |
9 13
|
eqtrid |
|- ( ph -> .+b = ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 15 |
12
|
fveq2d |
|- ( ph -> ( .s ` H ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 16 |
3 15
|
eqtrid |
|- ( ph -> .xb = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 17 |
16
|
oveqd |
|- ( ph -> ( A .xb X ) = ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ) |
| 18 |
16
|
oveqd |
|- ( ph -> ( C .xb Y ) = ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) |
| 19 |
14 17 18
|
oveq123d |
|- ( ph -> ( ( A .xb X ) .+b ( C .xb Y ) ) = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) ) |
| 20 |
19
|
eqeq2d |
|- ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> Z = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) ) ) |
| 21 |
|
eqid |
|- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
| 22 |
|
eqid |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
| 23 |
12
|
fveq2d |
|- ( ph -> ( Base ` H ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 24 |
|
eqid |
|- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
| 25 |
24 22
|
tcphbas |
|- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 26 |
23 2 25
|
3eqtr4g |
|- ( ph -> B = ( Base ` ( RRfld freeLMod I ) ) ) |
| 27 |
6 26
|
eleqtrd |
|- ( ph -> X e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 28 |
8 26
|
eleqtrd |
|- ( ph -> Z e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 29 |
|
resrng |
|- RRfld e. *Ring |
| 30 |
|
srngring |
|- ( RRfld e. *Ring -> RRfld e. Ring ) |
| 31 |
29 30
|
mp1i |
|- ( ph -> RRfld e. Ring ) |
| 32 |
|
rebase |
|- RR = ( Base ` RRfld ) |
| 33 |
|
eqid |
|- ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( RRfld freeLMod I ) ) |
| 34 |
24 33
|
tcphvsca |
|- ( .s ` ( RRfld freeLMod I ) ) = ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 35 |
34
|
eqcomi |
|- ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( .s ` ( RRfld freeLMod I ) ) |
| 36 |
|
remulr |
|- x. = ( .r ` RRfld ) |
| 37 |
7 26
|
eleqtrd |
|- ( ph -> Y e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 38 |
|
replusg |
|- + = ( +g ` RRfld ) |
| 39 |
|
eqid |
|- ( +g ` ( RRfld freeLMod I ) ) = ( +g ` ( RRfld freeLMod I ) ) |
| 40 |
24 39
|
tchplusg |
|- ( +g ` ( RRfld freeLMod I ) ) = ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 41 |
40
|
eqcomi |
|- ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( +g ` ( RRfld freeLMod I ) ) |
| 42 |
21 22 4 27 28 31 32 5 35 36 37 38 41 10
|
frlmvplusgscavalb |
|- ( ph -> ( Z = ( ( A ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) X ) ( +g ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ( C ( .s ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) Y ) ) <-> A. i e. I ( Z ` i ) = ( ( A x. ( X ` i ) ) + ( C x. ( Y ` i ) ) ) ) ) |
| 43 |
20 42
|
bitrd |
|- ( ph -> ( Z = ( ( A .xb X ) .+b ( C .xb Y ) ) <-> A. i e. I ( Z ` i ) = ( ( A x. ( X ` i ) ) + ( C x. ( Y ` i ) ) ) ) ) |