| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxsca.r |  |-  H = ( RR^ ` I ) | 
						
							| 2 |  | eqid |  |-  ( Base ` H ) = ( Base ` H ) | 
						
							| 3 | 1 2 | rrxprds |  |-  ( I e. V -> H = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) | 
						
							| 4 | 3 | fveq2d |  |-  ( I e. V -> ( Scalar ` H ) = ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) ) | 
						
							| 5 |  | fvex |  |-  ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) e. _V | 
						
							| 6 | 5 | mptex |  |-  ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) e. _V | 
						
							| 7 |  | eqid |  |-  ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) = ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) | 
						
							| 8 |  | eqid |  |-  ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) | 
						
							| 9 | 7 8 | tngsca |  |-  ( ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) e. _V -> ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) ) | 
						
							| 10 | 9 | eqcomd |  |-  ( ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) e. _V -> ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) | 
						
							| 11 | 6 10 | mp1i |  |-  ( I e. V -> ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) | 
						
							| 12 |  | eqid |  |-  ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) | 
						
							| 14 |  | eqid |  |-  ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) | 
						
							| 15 | 12 13 14 | tcphval |  |-  ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) = ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) | 
						
							| 16 | 15 | fveq2i |  |-  ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) = ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) | 
						
							| 17 | 16 | a1i |  |-  ( I e. V -> ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) = ( Scalar ` ( ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) toNrmGrp ( x e. ( Base ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) |-> ( sqrt ` ( x ( .i ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) x ) ) ) ) ) ) | 
						
							| 18 |  | eqid |  |-  ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) = ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) | 
						
							| 19 |  | refld |  |-  RRfld e. Field | 
						
							| 20 | 19 | a1i |  |-  ( I e. V -> RRfld e. Field ) | 
						
							| 21 |  | id |  |-  ( I e. V -> I e. V ) | 
						
							| 22 |  | snex |  |-  { ( ( subringAlg ` RRfld ) ` RR ) } e. _V | 
						
							| 23 | 22 | a1i |  |-  ( I e. V -> { ( ( subringAlg ` RRfld ) ` RR ) } e. _V ) | 
						
							| 24 | 21 23 | xpexd |  |-  ( I e. V -> ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) e. _V ) | 
						
							| 25 | 18 20 24 | prdssca |  |-  ( I e. V -> RRfld = ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) ) | 
						
							| 26 |  | fvex |  |-  ( Base ` H ) e. _V | 
						
							| 27 |  | eqid |  |-  ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) = ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) | 
						
							| 28 |  | eqid |  |-  ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) | 
						
							| 29 | 27 28 | resssca |  |-  ( ( Base ` H ) e. _V -> ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) | 
						
							| 30 | 26 29 | mp1i |  |-  ( I e. V -> ( Scalar ` ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) ) = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) | 
						
							| 31 | 25 30 | eqtrd |  |-  ( I e. V -> RRfld = ( Scalar ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) | 
						
							| 32 | 11 17 31 | 3eqtr4d |  |-  ( I e. V -> ( Scalar ` ( toCPreHil ` ( ( RRfld Xs_ ( I X. { ( ( subringAlg ` RRfld ) ` RR ) } ) ) |`s ( Base ` H ) ) ) ) = RRfld ) | 
						
							| 33 | 4 32 | eqtrd |  |-  ( I e. V -> ( Scalar ` H ) = RRfld ) |