Step |
Hyp |
Ref |
Expression |
1 |
|
rrxsca.r |
β’ π» = ( β^ β πΌ ) |
2 |
|
eqid |
β’ ( Base β π» ) = ( Base β π» ) |
3 |
1 2
|
rrxprds |
β’ ( πΌ β π β π» = ( toβPreHil β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) ) |
4 |
3
|
fveq2d |
β’ ( πΌ β π β ( Scalar β π» ) = ( Scalar β ( toβPreHil β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) ) ) |
5 |
|
fvex |
β’ ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) β V |
6 |
5
|
mptex |
β’ ( π₯ β ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) β¦ ( β β ( π₯ ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) π₯ ) ) ) β V |
7 |
|
eqid |
β’ ( ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) toNrmGrp ( π₯ β ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) β¦ ( β β ( π₯ ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) π₯ ) ) ) ) = ( ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) toNrmGrp ( π₯ β ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) β¦ ( β β ( π₯ ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) π₯ ) ) ) ) |
8 |
|
eqid |
β’ ( Scalar β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) = ( Scalar β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) |
9 |
7 8
|
tngsca |
β’ ( ( π₯ β ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) β¦ ( β β ( π₯ ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) π₯ ) ) ) β V β ( Scalar β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) = ( Scalar β ( ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) toNrmGrp ( π₯ β ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) β¦ ( β β ( π₯ ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) π₯ ) ) ) ) ) ) |
10 |
9
|
eqcomd |
β’ ( ( π₯ β ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) β¦ ( β β ( π₯ ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) π₯ ) ) ) β V β ( Scalar β ( ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) toNrmGrp ( π₯ β ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) β¦ ( β β ( π₯ ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) π₯ ) ) ) ) ) = ( Scalar β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) ) |
11 |
6 10
|
mp1i |
β’ ( πΌ β π β ( Scalar β ( ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) toNrmGrp ( π₯ β ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) β¦ ( β β ( π₯ ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) π₯ ) ) ) ) ) = ( Scalar β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) ) |
12 |
|
eqid |
β’ ( toβPreHil β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) = ( toβPreHil β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) |
13 |
|
eqid |
β’ ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) = ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) |
14 |
|
eqid |
β’ ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) = ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) |
15 |
12 13 14
|
tcphval |
β’ ( toβPreHil β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) = ( ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) toNrmGrp ( π₯ β ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) β¦ ( β β ( π₯ ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) π₯ ) ) ) ) |
16 |
15
|
fveq2i |
β’ ( Scalar β ( toβPreHil β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) ) = ( Scalar β ( ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) toNrmGrp ( π₯ β ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) β¦ ( β β ( π₯ ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) π₯ ) ) ) ) ) |
17 |
16
|
a1i |
β’ ( πΌ β π β ( Scalar β ( toβPreHil β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) ) = ( Scalar β ( ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) toNrmGrp ( π₯ β ( Base β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) β¦ ( β β ( π₯ ( Β·π β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) π₯ ) ) ) ) ) ) |
18 |
|
eqid |
β’ ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) = ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) |
19 |
|
refld |
β’ βfld β Field |
20 |
19
|
a1i |
β’ ( πΌ β π β βfld β Field ) |
21 |
|
id |
β’ ( πΌ β π β πΌ β π ) |
22 |
|
snex |
β’ { ( ( subringAlg β βfld ) β β ) } β V |
23 |
22
|
a1i |
β’ ( πΌ β π β { ( ( subringAlg β βfld ) β β ) } β V ) |
24 |
21 23
|
xpexd |
β’ ( πΌ β π β ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) β V ) |
25 |
18 20 24
|
prdssca |
β’ ( πΌ β π β βfld = ( Scalar β ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) ) ) |
26 |
|
fvex |
β’ ( Base β π» ) β V |
27 |
|
eqid |
β’ ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) = ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) |
28 |
|
eqid |
β’ ( Scalar β ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) ) = ( Scalar β ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) ) |
29 |
27 28
|
resssca |
β’ ( ( Base β π» ) β V β ( Scalar β ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) ) = ( Scalar β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) ) |
30 |
26 29
|
mp1i |
β’ ( πΌ β π β ( Scalar β ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) ) = ( Scalar β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) ) |
31 |
25 30
|
eqtrd |
β’ ( πΌ β π β βfld = ( Scalar β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) ) |
32 |
11 17 31
|
3eqtr4d |
β’ ( πΌ β π β ( Scalar β ( toβPreHil β ( ( βfld Xs ( πΌ Γ { ( ( subringAlg β βfld ) β β ) } ) ) βΎs ( Base β π» ) ) ) ) = βfld ) |
33 |
4 32
|
eqtrd |
β’ ( πΌ β π β ( Scalar β π» ) = βfld ) |