Step |
Hyp |
Ref |
Expression |
1 |
|
frlmplusgvalb.f |
⊢ 𝐹 = ( 𝑅 freeLMod 𝐼 ) |
2 |
|
frlmplusgvalb.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
|
frlmplusgvalb.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
4 |
|
frlmplusgvalb.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
5 |
|
frlmplusgvalb.z |
⊢ ( 𝜑 → 𝑍 ∈ 𝐵 ) |
6 |
|
frlmplusgvalb.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
|
frlmvscavalb.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
8 |
|
frlmvscavalb.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝐾 ) |
9 |
|
frlmvscavalb.v |
⊢ ∙ = ( ·𝑠 ‘ 𝐹 ) |
10 |
|
frlmvscavalb.t |
⊢ · = ( .r ‘ 𝑅 ) |
11 |
|
frlmvplusgscavalb.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
12 |
|
frlmvplusgscavalb.a |
⊢ + = ( +g ‘ 𝑅 ) |
13 |
|
frlmvplusgscavalb.p |
⊢ ✚ = ( +g ‘ 𝐹 ) |
14 |
|
frlmvplusgscavalb.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝐾 ) |
15 |
1
|
frlmlmod |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝐹 ∈ LMod ) |
16 |
6 3 15
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ LMod ) |
17 |
8 7
|
eleqtrdi |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
18 |
1
|
frlmsca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑊 ) → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
19 |
6 3 18
|
syl2anc |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝐹 ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
21 |
17 20
|
eleqtrd |
⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
22 |
|
eqid |
⊢ ( Scalar ‘ 𝐹 ) = ( Scalar ‘ 𝐹 ) |
23 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐹 ) ) = ( Base ‘ ( Scalar ‘ 𝐹 ) ) |
24 |
2 22 9 23
|
lmodvscl |
⊢ ( ( 𝐹 ∈ LMod ∧ 𝐴 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝐴 ∙ 𝑋 ) ∈ 𝐵 ) |
25 |
16 21 4 24
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ∙ 𝑋 ) ∈ 𝐵 ) |
26 |
14 7
|
eleqtrdi |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ 𝑅 ) ) |
27 |
26 20
|
eleqtrd |
⊢ ( 𝜑 → 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ) |
28 |
2 22 9 23
|
lmodvscl |
⊢ ( ( 𝐹 ∈ LMod ∧ 𝐶 ∈ ( Base ‘ ( Scalar ‘ 𝐹 ) ) ∧ 𝑌 ∈ 𝐵 ) → ( 𝐶 ∙ 𝑌 ) ∈ 𝐵 ) |
29 |
16 27 11 28
|
syl3anc |
⊢ ( 𝜑 → ( 𝐶 ∙ 𝑌 ) ∈ 𝐵 ) |
30 |
1 2 3 25 5 6 29 12 13
|
frlmplusgvalb |
⊢ ( 𝜑 → ( 𝑍 = ( ( 𝐴 ∙ 𝑋 ) ✚ ( 𝐶 ∙ 𝑌 ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( ( 𝐴 ∙ 𝑋 ) ‘ 𝑖 ) + ( ( 𝐶 ∙ 𝑌 ) ‘ 𝑖 ) ) ) ) |
31 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐼 ∈ 𝑊 ) |
32 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐴 ∈ 𝐾 ) |
33 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝑋 ∈ 𝐵 ) |
34 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝑖 ∈ 𝐼 ) |
35 |
1 2 7 31 32 33 34 9 10
|
frlmvscaval |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝐴 ∙ 𝑋 ) ‘ 𝑖 ) = ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) ) |
36 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝐶 ∈ 𝐾 ) |
37 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → 𝑌 ∈ 𝐵 ) |
38 |
1 2 7 31 36 37 34 9 10
|
frlmvscaval |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝐶 ∙ 𝑌 ) ‘ 𝑖 ) = ( 𝐶 · ( 𝑌 ‘ 𝑖 ) ) ) |
39 |
35 38
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( ( 𝐴 ∙ 𝑋 ) ‘ 𝑖 ) + ( ( 𝐶 ∙ 𝑌 ) ‘ 𝑖 ) ) = ( ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) + ( 𝐶 · ( 𝑌 ‘ 𝑖 ) ) ) ) |
40 |
39
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐼 ) → ( ( 𝑍 ‘ 𝑖 ) = ( ( ( 𝐴 ∙ 𝑋 ) ‘ 𝑖 ) + ( ( 𝐶 ∙ 𝑌 ) ‘ 𝑖 ) ) ↔ ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) + ( 𝐶 · ( 𝑌 ‘ 𝑖 ) ) ) ) ) |
41 |
40
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( ( 𝐴 ∙ 𝑋 ) ‘ 𝑖 ) + ( ( 𝐶 ∙ 𝑌 ) ‘ 𝑖 ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) + ( 𝐶 · ( 𝑌 ‘ 𝑖 ) ) ) ) ) |
42 |
30 41
|
bitrd |
⊢ ( 𝜑 → ( 𝑍 = ( ( 𝐴 ∙ 𝑋 ) ✚ ( 𝐶 ∙ 𝑌 ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑍 ‘ 𝑖 ) = ( ( 𝐴 · ( 𝑋 ‘ 𝑖 ) ) + ( 𝐶 · ( 𝑌 ‘ 𝑖 ) ) ) ) ) |