Metamath Proof Explorer


Theorem frlmvplusgscavalb

Description: Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023)

Ref Expression
Hypotheses frlmplusgvalb.f F=RfreeLModI
frlmplusgvalb.b B=BaseF
frlmplusgvalb.i φIW
frlmplusgvalb.x φXB
frlmplusgvalb.z φZB
frlmplusgvalb.r φRRing
frlmvscavalb.k K=BaseR
frlmvscavalb.a φAK
frlmvscavalb.v ˙=F
frlmvscavalb.t ·˙=R
frlmvplusgscavalb.y φYB
frlmvplusgscavalb.a +˙=+R
frlmvplusgscavalb.p ˙=+F
frlmvplusgscavalb.c φCK
Assertion frlmvplusgscavalb φZ=A˙X˙C˙YiIZi=A·˙Xi+˙C·˙Yi

Proof

Step Hyp Ref Expression
1 frlmplusgvalb.f F=RfreeLModI
2 frlmplusgvalb.b B=BaseF
3 frlmplusgvalb.i φIW
4 frlmplusgvalb.x φXB
5 frlmplusgvalb.z φZB
6 frlmplusgvalb.r φRRing
7 frlmvscavalb.k K=BaseR
8 frlmvscavalb.a φAK
9 frlmvscavalb.v ˙=F
10 frlmvscavalb.t ·˙=R
11 frlmvplusgscavalb.y φYB
12 frlmvplusgscavalb.a +˙=+R
13 frlmvplusgscavalb.p ˙=+F
14 frlmvplusgscavalb.c φCK
15 1 frlmlmod RRingIWFLMod
16 6 3 15 syl2anc φFLMod
17 8 7 eleqtrdi φABaseR
18 1 frlmsca RRingIWR=ScalarF
19 6 3 18 syl2anc φR=ScalarF
20 19 fveq2d φBaseR=BaseScalarF
21 17 20 eleqtrd φABaseScalarF
22 eqid ScalarF=ScalarF
23 eqid BaseScalarF=BaseScalarF
24 2 22 9 23 lmodvscl FLModABaseScalarFXBA˙XB
25 16 21 4 24 syl3anc φA˙XB
26 14 7 eleqtrdi φCBaseR
27 26 20 eleqtrd φCBaseScalarF
28 2 22 9 23 lmodvscl FLModCBaseScalarFYBC˙YB
29 16 27 11 28 syl3anc φC˙YB
30 1 2 3 25 5 6 29 12 13 frlmplusgvalb φZ=A˙X˙C˙YiIZi=A˙Xi+˙C˙Yi
31 3 adantr φiIIW
32 8 adantr φiIAK
33 4 adantr φiIXB
34 simpr φiIiI
35 1 2 7 31 32 33 34 9 10 frlmvscaval φiIA˙Xi=A·˙Xi
36 14 adantr φiICK
37 11 adantr φiIYB
38 1 2 7 31 36 37 34 9 10 frlmvscaval φiIC˙Yi=C·˙Yi
39 35 38 oveq12d φiIA˙Xi+˙C˙Yi=A·˙Xi+˙C·˙Yi
40 39 eqeq2d φiIZi=A˙Xi+˙C˙YiZi=A·˙Xi+˙C·˙Yi
41 40 ralbidva φiIZi=A˙Xi+˙C˙YiiIZi=A·˙Xi+˙C·˙Yi
42 30 41 bitrd φZ=A˙X˙C˙YiIZi=A·˙Xi+˙C·˙Yi