Description: Addition combined with scalar multiplication in a free module at the coordinates. (Contributed by AV, 16-Jan-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frlmplusgvalb.f | |
|
frlmplusgvalb.b | |
||
frlmplusgvalb.i | |
||
frlmplusgvalb.x | |
||
frlmplusgvalb.z | |
||
frlmplusgvalb.r | |
||
frlmvscavalb.k | |
||
frlmvscavalb.a | |
||
frlmvscavalb.v | |
||
frlmvscavalb.t | |
||
frlmvplusgscavalb.y | |
||
frlmvplusgscavalb.a | |
||
frlmvplusgscavalb.p | |
||
frlmvplusgscavalb.c | |
||
Assertion | frlmvplusgscavalb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frlmplusgvalb.f | |
|
2 | frlmplusgvalb.b | |
|
3 | frlmplusgvalb.i | |
|
4 | frlmplusgvalb.x | |
|
5 | frlmplusgvalb.z | |
|
6 | frlmplusgvalb.r | |
|
7 | frlmvscavalb.k | |
|
8 | frlmvscavalb.a | |
|
9 | frlmvscavalb.v | |
|
10 | frlmvscavalb.t | |
|
11 | frlmvplusgscavalb.y | |
|
12 | frlmvplusgscavalb.a | |
|
13 | frlmvplusgscavalb.p | |
|
14 | frlmvplusgscavalb.c | |
|
15 | 1 | frlmlmod | |
16 | 6 3 15 | syl2anc | |
17 | 8 7 | eleqtrdi | |
18 | 1 | frlmsca | |
19 | 6 3 18 | syl2anc | |
20 | 19 | fveq2d | |
21 | 17 20 | eleqtrd | |
22 | eqid | |
|
23 | eqid | |
|
24 | 2 22 9 23 | lmodvscl | |
25 | 16 21 4 24 | syl3anc | |
26 | 14 7 | eleqtrdi | |
27 | 26 20 | eleqtrd | |
28 | 2 22 9 23 | lmodvscl | |
29 | 16 27 11 28 | syl3anc | |
30 | 1 2 3 25 5 6 29 12 13 | frlmplusgvalb | |
31 | 3 | adantr | |
32 | 8 | adantr | |
33 | 4 | adantr | |
34 | simpr | |
|
35 | 1 2 7 31 32 33 34 9 10 | frlmvscaval | |
36 | 14 | adantr | |
37 | 11 | adantr | |
38 | 1 2 7 31 36 37 34 9 10 | frlmvscaval | |
39 | 35 38 | oveq12d | |
40 | 39 | eqeq2d | |
41 | 40 | ralbidva | |
42 | 30 41 | bitrd | |