Step |
Hyp |
Ref |
Expression |
1 |
|
rrxlines.e |
⊢ 𝐸 = ( ℝ^ ‘ 𝐼 ) |
2 |
|
rrxlines.p |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
3 |
|
rrxlines.l |
⊢ 𝐿 = ( LineM ‘ 𝐸 ) |
4 |
|
rrxlines.m |
⊢ · = ( ·𝑠 ‘ 𝐸 ) |
5 |
|
rrxlines.a |
⊢ + = ( +g ‘ 𝐸 ) |
6 |
1 2 3 4 5
|
rrxlines |
⊢ ( 𝐼 ∈ Fin → 𝐿 = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) ) |
7 |
6
|
oveqd |
⊢ ( 𝐼 ∈ Fin → ( 𝑋 𝐿 𝑌 ) = ( 𝑋 ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) 𝑌 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑋 𝐿 𝑌 ) = ( 𝑋 ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) 𝑌 ) ) |
9 |
|
eqidd |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) ) |
10 |
|
simpl |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑥 = 𝑋 ) |
11 |
10
|
oveq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( 1 − 𝑡 ) · 𝑥 ) = ( ( 1 − 𝑡 ) · 𝑋 ) ) |
12 |
|
simpr |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → 𝑦 = 𝑌 ) |
13 |
12
|
oveq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑡 · 𝑦 ) = ( 𝑡 · 𝑌 ) ) |
14 |
11 13
|
oveq12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) ) |
15 |
14
|
eqeq2d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) ↔ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) ) ) |
16 |
15
|
rexbidv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → ( ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) ↔ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) ) ) |
17 |
16
|
rabbidv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) → { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } = { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝐼 ∈ Fin ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) ∧ ( 𝑥 = 𝑋 ∧ 𝑦 = 𝑌 ) ) → { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } = { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } ) |
19 |
|
sneq |
⊢ ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } ) |
20 |
19
|
difeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑃 ∖ { 𝑥 } ) = ( 𝑃 ∖ { 𝑋 } ) ) |
21 |
20
|
adantl |
⊢ ( ( ( 𝐼 ∈ Fin ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) ∧ 𝑥 = 𝑋 ) → ( 𝑃 ∖ { 𝑥 } ) = ( 𝑃 ∖ { 𝑋 } ) ) |
22 |
|
simpr1 |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑋 ∈ 𝑃 ) |
23 |
|
id |
⊢ ( 𝑋 ≠ 𝑌 → 𝑋 ≠ 𝑌 ) |
24 |
23
|
necomd |
⊢ ( 𝑋 ≠ 𝑌 → 𝑌 ≠ 𝑋 ) |
25 |
24
|
anim2i |
⊢ ( ( 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑌 ∈ 𝑃 ∧ 𝑌 ≠ 𝑋 ) ) |
26 |
25
|
3adant1 |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑌 ∈ 𝑃 ∧ 𝑌 ≠ 𝑋 ) ) |
27 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( 𝑃 ∖ { 𝑋 } ) ↔ ( 𝑌 ∈ 𝑃 ∧ 𝑌 ≠ 𝑋 ) ) |
28 |
26 27
|
sylibr |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → 𝑌 ∈ ( 𝑃 ∖ { 𝑋 } ) ) |
29 |
28
|
adantl |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) → 𝑌 ∈ ( 𝑃 ∖ { 𝑋 } ) ) |
30 |
2
|
ovexi |
⊢ 𝑃 ∈ V |
31 |
30
|
rabex |
⊢ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } ∈ V |
32 |
31
|
a1i |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) → { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } ∈ V ) |
33 |
9 18 21 22 29 32
|
ovmpodx |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑋 ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } ) |
34 |
8 33
|
eqtrd |
⊢ ( ( 𝐼 ∈ Fin ∧ ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } ) |