| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxlines.e | ⊢ 𝐸  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 2 |  | rrxlines.p | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 3 |  | rrxlines.l | ⊢ 𝐿  =  ( LineM ‘ 𝐸 ) | 
						
							| 4 |  | rrxlines.m | ⊢  ·   =  (  ·𝑠  ‘ 𝐸 ) | 
						
							| 5 |  | rrxlines.a | ⊢  +   =  ( +g ‘ 𝐸 ) | 
						
							| 6 | 1 2 3 4 5 | rrxlines | ⊢ ( 𝐼  ∈  Fin  →  𝐿  =  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  ( 𝑃  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) ) | 
						
							| 7 | 6 | oveqd | ⊢ ( 𝐼  ∈  Fin  →  ( 𝑋 𝐿 𝑌 )  =  ( 𝑋 ( 𝑥  ∈  𝑃 ,  𝑦  ∈  ( 𝑃  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) 𝑌 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑋 𝐿 𝑌 )  =  ( 𝑋 ( 𝑥  ∈  𝑃 ,  𝑦  ∈  ( 𝑃  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) 𝑌 ) ) | 
						
							| 9 |  | eqidd | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  ( 𝑃  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } )  =  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  ( 𝑃  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) ) | 
						
							| 10 |  | simpl | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  𝑥  =  𝑋 ) | 
						
							| 11 | 10 | oveq2d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( ( 1  −  𝑡 )  ·  𝑥 )  =  ( ( 1  −  𝑡 )  ·  𝑋 ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  𝑦  =  𝑌 ) | 
						
							| 13 | 12 | oveq2d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( 𝑡  ·  𝑦 )  =  ( 𝑡  ·  𝑌 ) ) | 
						
							| 14 | 11 13 | oveq12d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) )  =  ( ( ( 1  −  𝑡 )  ·  𝑋 )  +  ( 𝑡  ·  𝑌 ) ) ) | 
						
							| 15 | 14 | eqeq2d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) )  ↔  𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑋 )  +  ( 𝑡  ·  𝑌 ) ) ) ) | 
						
							| 16 | 15 | rexbidv | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  ( ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) )  ↔  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑋 )  +  ( 𝑡  ·  𝑌 ) ) ) ) | 
						
							| 17 | 16 | rabbidv | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 )  →  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) }  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑋 )  +  ( 𝑡  ·  𝑌 ) ) } ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  ( 𝑥  =  𝑋  ∧  𝑦  =  𝑌 ) )  →  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) }  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑋 )  +  ( 𝑡  ·  𝑌 ) ) } ) | 
						
							| 19 |  | sneq | ⊢ ( 𝑥  =  𝑋  →  { 𝑥 }  =  { 𝑋 } ) | 
						
							| 20 | 19 | difeq2d | ⊢ ( 𝑥  =  𝑋  →  ( 𝑃  ∖  { 𝑥 } )  =  ( 𝑃  ∖  { 𝑋 } ) ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  ∧  𝑥  =  𝑋 )  →  ( 𝑃  ∖  { 𝑥 } )  =  ( 𝑃  ∖  { 𝑋 } ) ) | 
						
							| 22 |  | simpr1 | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  𝑋  ∈  𝑃 ) | 
						
							| 23 |  | id | ⊢ ( 𝑋  ≠  𝑌  →  𝑋  ≠  𝑌 ) | 
						
							| 24 | 23 | necomd | ⊢ ( 𝑋  ≠  𝑌  →  𝑌  ≠  𝑋 ) | 
						
							| 25 | 24 | anim2i | ⊢ ( ( 𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌  ∈  𝑃  ∧  𝑌  ≠  𝑋 ) ) | 
						
							| 26 | 25 | 3adant1 | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  ( 𝑌  ∈  𝑃  ∧  𝑌  ≠  𝑋 ) ) | 
						
							| 27 |  | eldifsn | ⊢ ( 𝑌  ∈  ( 𝑃  ∖  { 𝑋 } )  ↔  ( 𝑌  ∈  𝑃  ∧  𝑌  ≠  𝑋 ) ) | 
						
							| 28 | 26 27 | sylibr | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 )  →  𝑌  ∈  ( 𝑃  ∖  { 𝑋 } ) ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  𝑌  ∈  ( 𝑃  ∖  { 𝑋 } ) ) | 
						
							| 30 | 2 | ovexi | ⊢ 𝑃  ∈  V | 
						
							| 31 | 30 | rabex | ⊢ { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑋 )  +  ( 𝑡  ·  𝑌 ) ) }  ∈  V | 
						
							| 32 | 31 | a1i | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑋 )  +  ( 𝑡  ·  𝑌 ) ) }  ∈  V ) | 
						
							| 33 | 9 18 21 22 29 32 | ovmpodx | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑋 ( 𝑥  ∈  𝑃 ,  𝑦  ∈  ( 𝑃  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑋 )  +  ( 𝑡  ·  𝑌 ) ) } ) | 
						
							| 34 | 8 33 | eqtrd | ⊢ ( ( 𝐼  ∈  Fin  ∧  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  𝑋  ≠  𝑌 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑋 )  +  ( 𝑡  ·  𝑌 ) ) } ) |