Metamath Proof Explorer


Theorem rrxline

Description: The line passing through the two different points X and Y in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023)

Ref Expression
Hypotheses rrxlines.e 𝐸 = ( ℝ^ ‘ 𝐼 )
rrxlines.p 𝑃 = ( ℝ ↑m 𝐼 )
rrxlines.l 𝐿 = ( LineM𝐸 )
rrxlines.m · = ( ·𝑠𝐸 )
rrxlines.a + = ( +g𝐸 )
Assertion rrxline ( ( 𝐼 ∈ Fin ∧ ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } )

Proof

Step Hyp Ref Expression
1 rrxlines.e 𝐸 = ( ℝ^ ‘ 𝐼 )
2 rrxlines.p 𝑃 = ( ℝ ↑m 𝐼 )
3 rrxlines.l 𝐿 = ( LineM𝐸 )
4 rrxlines.m · = ( ·𝑠𝐸 )
5 rrxlines.a + = ( +g𝐸 )
6 1 2 3 4 5 rrxlines ( 𝐼 ∈ Fin → 𝐿 = ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) )
7 6 oveqd ( 𝐼 ∈ Fin → ( 𝑋 𝐿 𝑌 ) = ( 𝑋 ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) 𝑌 ) )
8 7 adantr ( ( 𝐼 ∈ Fin ∧ ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ) → ( 𝑋 𝐿 𝑌 ) = ( 𝑋 ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) 𝑌 ) )
9 eqidd ( ( 𝐼 ∈ Fin ∧ ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ) → ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) = ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) )
10 simpl ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑥 = 𝑋 )
11 10 oveq2d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( 1 − 𝑡 ) · 𝑥 ) = ( ( 1 − 𝑡 ) · 𝑋 ) )
12 simpr ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → 𝑦 = 𝑌 )
13 12 oveq2d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑡 · 𝑦 ) = ( 𝑡 · 𝑌 ) )
14 11 13 oveq12d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) )
15 14 eqeq2d ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) ↔ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) ) )
16 15 rexbidv ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → ( ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) ↔ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) ) )
17 16 rabbidv ( ( 𝑥 = 𝑋𝑦 = 𝑌 ) → { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } = { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } )
18 17 adantl ( ( ( 𝐼 ∈ Fin ∧ ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ) ∧ ( 𝑥 = 𝑋𝑦 = 𝑌 ) ) → { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } = { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } )
19 sneq ( 𝑥 = 𝑋 → { 𝑥 } = { 𝑋 } )
20 19 difeq2d ( 𝑥 = 𝑋 → ( 𝑃 ∖ { 𝑥 } ) = ( 𝑃 ∖ { 𝑋 } ) )
21 20 adantl ( ( ( 𝐼 ∈ Fin ∧ ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ) ∧ 𝑥 = 𝑋 ) → ( 𝑃 ∖ { 𝑥 } ) = ( 𝑃 ∖ { 𝑋 } ) )
22 simpr1 ( ( 𝐼 ∈ Fin ∧ ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ) → 𝑋𝑃 )
23 id ( 𝑋𝑌𝑋𝑌 )
24 23 necomd ( 𝑋𝑌𝑌𝑋 )
25 24 anim2i ( ( 𝑌𝑃𝑋𝑌 ) → ( 𝑌𝑃𝑌𝑋 ) )
26 25 3adant1 ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) → ( 𝑌𝑃𝑌𝑋 ) )
27 eldifsn ( 𝑌 ∈ ( 𝑃 ∖ { 𝑋 } ) ↔ ( 𝑌𝑃𝑌𝑋 ) )
28 26 27 sylibr ( ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) → 𝑌 ∈ ( 𝑃 ∖ { 𝑋 } ) )
29 28 adantl ( ( 𝐼 ∈ Fin ∧ ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ) → 𝑌 ∈ ( 𝑃 ∖ { 𝑋 } ) )
30 2 ovexi 𝑃 ∈ V
31 30 rabex { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } ∈ V
32 31 a1i ( ( 𝐼 ∈ Fin ∧ ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ) → { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } ∈ V )
33 9 18 21 22 29 32 ovmpodx ( ( 𝐼 ∈ Fin ∧ ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ) → ( 𝑋 ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑥 ) + ( 𝑡 · 𝑦 ) ) } ) 𝑌 ) = { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } )
34 8 33 eqtrd ( ( 𝐼 ∈ Fin ∧ ( 𝑋𝑃𝑌𝑃𝑋𝑌 ) ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) · 𝑋 ) + ( 𝑡 · 𝑌 ) ) } )