| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxlines.e | ⊢ 𝐸  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 2 |  | rrxlines.p | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 3 |  | rrxlines.l | ⊢ 𝐿  =  ( LineM ‘ 𝐸 ) | 
						
							| 4 |  | rrxlines.m | ⊢  ·   =  (  ·𝑠  ‘ 𝐸 ) | 
						
							| 5 |  | rrxlines.a | ⊢  +   =  ( +g ‘ 𝐸 ) | 
						
							| 6 | 1 | fvexi | ⊢ 𝐸  ∈  V | 
						
							| 7 |  | eqid | ⊢ ( Base ‘ 𝐸 )  =  ( Base ‘ 𝐸 ) | 
						
							| 8 |  | eqid | ⊢ ( Scalar ‘ 𝐸 )  =  ( Scalar ‘ 𝐸 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝐸 ) )  =  ( Base ‘ ( Scalar ‘ 𝐸 ) ) | 
						
							| 10 |  | eqid | ⊢ ( -g ‘ ( Scalar ‘ 𝐸 ) )  =  ( -g ‘ ( Scalar ‘ 𝐸 ) ) | 
						
							| 11 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝐸 ) )  =  ( 1r ‘ ( Scalar ‘ 𝐸 ) ) | 
						
							| 12 | 7 3 8 9 4 5 10 11 | lines | ⊢ ( 𝐸  ∈  V  →  𝐿  =  ( 𝑥  ∈  ( Base ‘ 𝐸 ) ,  𝑦  ∈  ( ( Base ‘ 𝐸 )  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  ( Base ‘ 𝐸 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) ) | 
						
							| 13 | 6 12 | mp1i | ⊢ ( 𝐼  ∈  Fin  →  𝐿  =  ( 𝑥  ∈  ( Base ‘ 𝐸 ) ,  𝑦  ∈  ( ( Base ‘ 𝐸 )  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  ( Base ‘ 𝐸 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) ) | 
						
							| 14 |  | id | ⊢ ( 𝐼  ∈  Fin  →  𝐼  ∈  Fin ) | 
						
							| 15 | 14 1 7 | rrxbasefi | ⊢ ( 𝐼  ∈  Fin  →  ( Base ‘ 𝐸 )  =  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 16 | 15 2 | eqtr4di | ⊢ ( 𝐼  ∈  Fin  →  ( Base ‘ 𝐸 )  =  𝑃 ) | 
						
							| 17 | 16 | difeq1d | ⊢ ( 𝐼  ∈  Fin  →  ( ( Base ‘ 𝐸 )  ∖  { 𝑥 } )  =  ( 𝑃  ∖  { 𝑥 } ) ) | 
						
							| 18 | 1 | rrxsca | ⊢ ( 𝐼  ∈  Fin  →  ( Scalar ‘ 𝐸 )  =  ℝfld ) | 
						
							| 19 | 18 | fveq2d | ⊢ ( 𝐼  ∈  Fin  →  ( Base ‘ ( Scalar ‘ 𝐸 ) )  =  ( Base ‘ ℝfld ) ) | 
						
							| 20 |  | rebase | ⊢ ℝ  =  ( Base ‘ ℝfld ) | 
						
							| 21 | 19 20 | eqtr4di | ⊢ ( 𝐼  ∈  Fin  →  ( Base ‘ ( Scalar ‘ 𝐸 ) )  =  ℝ ) | 
						
							| 22 | 18 | fveq2d | ⊢ ( 𝐼  ∈  Fin  →  ( 1r ‘ ( Scalar ‘ 𝐸 ) )  =  ( 1r ‘ ℝfld ) ) | 
						
							| 23 |  | re1r | ⊢ 1  =  ( 1r ‘ ℝfld ) | 
						
							| 24 | 22 23 | eqtr4di | ⊢ ( 𝐼  ∈  Fin  →  ( 1r ‘ ( Scalar ‘ 𝐸 ) )  =  1 ) | 
						
							| 25 | 24 | oveq1d | ⊢ ( 𝐼  ∈  Fin  →  ( ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  =  ( 1 ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  =  ( 1 ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 ) ) | 
						
							| 27 | 18 | fveq2d | ⊢ ( 𝐼  ∈  Fin  →  ( -g ‘ ( Scalar ‘ 𝐸 ) )  =  ( -g ‘ ℝfld ) ) | 
						
							| 28 | 27 | oveqd | ⊢ ( 𝐼  ∈  Fin  →  ( 1 ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  =  ( 1 ( -g ‘ ℝfld ) 𝑡 ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) ) )  →  ( 1 ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  =  ( 1 ( -g ‘ ℝfld ) 𝑡 ) ) | 
						
							| 30 | 21 | eleq2d | ⊢ ( 𝐼  ∈  Fin  →  ( 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) )  ↔  𝑡  ∈  ℝ ) ) | 
						
							| 31 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 32 |  | eqid | ⊢ ( -g ‘ ℝfld )  =  ( -g ‘ ℝfld ) | 
						
							| 33 | 32 | resubgval | ⊢ ( ( 1  ∈  ℝ  ∧  𝑡  ∈  ℝ )  →  ( 1  −  𝑡 )  =  ( 1 ( -g ‘ ℝfld ) 𝑡 ) ) | 
						
							| 34 | 33 | eqcomd | ⊢ ( ( 1  ∈  ℝ  ∧  𝑡  ∈  ℝ )  →  ( 1 ( -g ‘ ℝfld ) 𝑡 )  =  ( 1  −  𝑡 ) ) | 
						
							| 35 | 31 34 | mpan | ⊢ ( 𝑡  ∈  ℝ  →  ( 1 ( -g ‘ ℝfld ) 𝑡 )  =  ( 1  −  𝑡 ) ) | 
						
							| 36 | 30 35 | biimtrdi | ⊢ ( 𝐼  ∈  Fin  →  ( 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) )  →  ( 1 ( -g ‘ ℝfld ) 𝑡 )  =  ( 1  −  𝑡 ) ) ) | 
						
							| 37 | 36 | imp | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) ) )  →  ( 1 ( -g ‘ ℝfld ) 𝑡 )  =  ( 1  −  𝑡 ) ) | 
						
							| 38 | 26 29 37 | 3eqtrd | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  =  ( 1  −  𝑡 ) ) | 
						
							| 39 | 38 | oveq1d | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) ) )  →  ( ( ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  ·  𝑥 )  =  ( ( 1  −  𝑡 )  ·  𝑥 ) ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) ) )  →  ( ( ( ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) )  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) ) | 
						
							| 41 | 40 | eqeq2d | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) ) )  →  ( 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) )  ↔  𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) ) ) | 
						
							| 42 | 21 41 | rexeqbidva | ⊢ ( 𝐼  ∈  Fin  →  ( ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) )  ↔  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) ) ) | 
						
							| 43 | 16 42 | rabeqbidv | ⊢ ( 𝐼  ∈  Fin  →  { 𝑝  ∈  ( Base ‘ 𝐸 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) }  =  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) | 
						
							| 44 | 16 17 43 | mpoeq123dv | ⊢ ( 𝐼  ∈  Fin  →  ( 𝑥  ∈  ( Base ‘ 𝐸 ) ,  𝑦  ∈  ( ( Base ‘ 𝐸 )  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  ( Base ‘ 𝐸 )  ∣  ∃ 𝑡  ∈  ( Base ‘ ( Scalar ‘ 𝐸 ) ) 𝑝  =  ( ( ( ( 1r ‘ ( Scalar ‘ 𝐸 ) ) ( -g ‘ ( Scalar ‘ 𝐸 ) ) 𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } )  =  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  ( 𝑃  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) ) | 
						
							| 45 | 13 44 | eqtrd | ⊢ ( 𝐼  ∈  Fin  →  𝐿  =  ( 𝑥  ∈  𝑃 ,  𝑦  ∈  ( 𝑃  ∖  { 𝑥 } )  ↦  { 𝑝  ∈  𝑃  ∣  ∃ 𝑡  ∈  ℝ 𝑝  =  ( ( ( 1  −  𝑡 )  ·  𝑥 )  +  ( 𝑡  ·  𝑦 ) ) } ) ) |