| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxlines.e |  |-  E = ( RR^ ` I ) | 
						
							| 2 |  | rrxlines.p |  |-  P = ( RR ^m I ) | 
						
							| 3 |  | rrxlines.l |  |-  L = ( LineM ` E ) | 
						
							| 4 |  | rrxlines.m |  |-  .x. = ( .s ` E ) | 
						
							| 5 |  | rrxlines.a |  |-  .+ = ( +g ` E ) | 
						
							| 6 | 1 | fvexi |  |-  E e. _V | 
						
							| 7 |  | eqid |  |-  ( Base ` E ) = ( Base ` E ) | 
						
							| 8 |  | eqid |  |-  ( Scalar ` E ) = ( Scalar ` E ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( Scalar ` E ) ) = ( Base ` ( Scalar ` E ) ) | 
						
							| 10 |  | eqid |  |-  ( -g ` ( Scalar ` E ) ) = ( -g ` ( Scalar ` E ) ) | 
						
							| 11 |  | eqid |  |-  ( 1r ` ( Scalar ` E ) ) = ( 1r ` ( Scalar ` E ) ) | 
						
							| 12 | 7 3 8 9 4 5 10 11 | lines |  |-  ( E e. _V -> L = ( x e. ( Base ` E ) , y e. ( ( Base ` E ) \ { x } ) |-> { p e. ( Base ` E ) | E. t e. ( Base ` ( Scalar ` E ) ) p = ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) } ) ) | 
						
							| 13 | 6 12 | mp1i |  |-  ( I e. Fin -> L = ( x e. ( Base ` E ) , y e. ( ( Base ` E ) \ { x } ) |-> { p e. ( Base ` E ) | E. t e. ( Base ` ( Scalar ` E ) ) p = ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) } ) ) | 
						
							| 14 |  | id |  |-  ( I e. Fin -> I e. Fin ) | 
						
							| 15 | 14 1 7 | rrxbasefi |  |-  ( I e. Fin -> ( Base ` E ) = ( RR ^m I ) ) | 
						
							| 16 | 15 2 | eqtr4di |  |-  ( I e. Fin -> ( Base ` E ) = P ) | 
						
							| 17 | 16 | difeq1d |  |-  ( I e. Fin -> ( ( Base ` E ) \ { x } ) = ( P \ { x } ) ) | 
						
							| 18 | 1 | rrxsca |  |-  ( I e. Fin -> ( Scalar ` E ) = RRfld ) | 
						
							| 19 | 18 | fveq2d |  |-  ( I e. Fin -> ( Base ` ( Scalar ` E ) ) = ( Base ` RRfld ) ) | 
						
							| 20 |  | rebase |  |-  RR = ( Base ` RRfld ) | 
						
							| 21 | 19 20 | eqtr4di |  |-  ( I e. Fin -> ( Base ` ( Scalar ` E ) ) = RR ) | 
						
							| 22 | 18 | fveq2d |  |-  ( I e. Fin -> ( 1r ` ( Scalar ` E ) ) = ( 1r ` RRfld ) ) | 
						
							| 23 |  | re1r |  |-  1 = ( 1r ` RRfld ) | 
						
							| 24 | 22 23 | eqtr4di |  |-  ( I e. Fin -> ( 1r ` ( Scalar ` E ) ) = 1 ) | 
						
							| 25 | 24 | oveq1d |  |-  ( I e. Fin -> ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) = ( 1 ( -g ` ( Scalar ` E ) ) t ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) = ( 1 ( -g ` ( Scalar ` E ) ) t ) ) | 
						
							| 27 | 18 | fveq2d |  |-  ( I e. Fin -> ( -g ` ( Scalar ` E ) ) = ( -g ` RRfld ) ) | 
						
							| 28 | 27 | oveqd |  |-  ( I e. Fin -> ( 1 ( -g ` ( Scalar ` E ) ) t ) = ( 1 ( -g ` RRfld ) t ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( 1 ( -g ` ( Scalar ` E ) ) t ) = ( 1 ( -g ` RRfld ) t ) ) | 
						
							| 30 | 21 | eleq2d |  |-  ( I e. Fin -> ( t e. ( Base ` ( Scalar ` E ) ) <-> t e. RR ) ) | 
						
							| 31 |  | 1re |  |-  1 e. RR | 
						
							| 32 |  | eqid |  |-  ( -g ` RRfld ) = ( -g ` RRfld ) | 
						
							| 33 | 32 | resubgval |  |-  ( ( 1 e. RR /\ t e. RR ) -> ( 1 - t ) = ( 1 ( -g ` RRfld ) t ) ) | 
						
							| 34 | 33 | eqcomd |  |-  ( ( 1 e. RR /\ t e. RR ) -> ( 1 ( -g ` RRfld ) t ) = ( 1 - t ) ) | 
						
							| 35 | 31 34 | mpan |  |-  ( t e. RR -> ( 1 ( -g ` RRfld ) t ) = ( 1 - t ) ) | 
						
							| 36 | 30 35 | biimtrdi |  |-  ( I e. Fin -> ( t e. ( Base ` ( Scalar ` E ) ) -> ( 1 ( -g ` RRfld ) t ) = ( 1 - t ) ) ) | 
						
							| 37 | 36 | imp |  |-  ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( 1 ( -g ` RRfld ) t ) = ( 1 - t ) ) | 
						
							| 38 | 26 29 37 | 3eqtrd |  |-  ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) = ( 1 - t ) ) | 
						
							| 39 | 38 | oveq1d |  |-  ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) = ( ( 1 - t ) .x. x ) ) | 
						
							| 40 | 39 | oveq1d |  |-  ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) = ( ( ( 1 - t ) .x. x ) .+ ( t .x. y ) ) ) | 
						
							| 41 | 40 | eqeq2d |  |-  ( ( I e. Fin /\ t e. ( Base ` ( Scalar ` E ) ) ) -> ( p = ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) <-> p = ( ( ( 1 - t ) .x. x ) .+ ( t .x. y ) ) ) ) | 
						
							| 42 | 21 41 | rexeqbidva |  |-  ( I e. Fin -> ( E. t e. ( Base ` ( Scalar ` E ) ) p = ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) <-> E. t e. RR p = ( ( ( 1 - t ) .x. x ) .+ ( t .x. y ) ) ) ) | 
						
							| 43 | 16 42 | rabeqbidv |  |-  ( I e. Fin -> { p e. ( Base ` E ) | E. t e. ( Base ` ( Scalar ` E ) ) p = ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) } = { p e. P | E. t e. RR p = ( ( ( 1 - t ) .x. x ) .+ ( t .x. y ) ) } ) | 
						
							| 44 | 16 17 43 | mpoeq123dv |  |-  ( I e. Fin -> ( x e. ( Base ` E ) , y e. ( ( Base ` E ) \ { x } ) |-> { p e. ( Base ` E ) | E. t e. ( Base ` ( Scalar ` E ) ) p = ( ( ( ( 1r ` ( Scalar ` E ) ) ( -g ` ( Scalar ` E ) ) t ) .x. x ) .+ ( t .x. y ) ) } ) = ( x e. P , y e. ( P \ { x } ) |-> { p e. P | E. t e. RR p = ( ( ( 1 - t ) .x. x ) .+ ( t .x. y ) ) } ) ) | 
						
							| 45 | 13 44 | eqtrd |  |-  ( I e. Fin -> L = ( x e. P , y e. ( P \ { x } ) |-> { p e. P | E. t e. RR p = ( ( ( 1 - t ) .x. x ) .+ ( t .x. y ) ) } ) ) |