Metamath Proof Explorer


Theorem rrxlines

Description: Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension. (Contributed by AV, 14-Jan-2023)

Ref Expression
Hypotheses rrxlines.e E = I
rrxlines.p P = I
rrxlines.l L = Line M E
rrxlines.m · ˙ = E
rrxlines.a + ˙ = + E
Assertion rrxlines I Fin L = x P , y P x p P | t p = 1 t · ˙ x + ˙ t · ˙ y

Proof

Step Hyp Ref Expression
1 rrxlines.e E = I
2 rrxlines.p P = I
3 rrxlines.l L = Line M E
4 rrxlines.m · ˙ = E
5 rrxlines.a + ˙ = + E
6 1 fvexi E V
7 eqid Base E = Base E
8 eqid Scalar E = Scalar E
9 eqid Base Scalar E = Base Scalar E
10 eqid - Scalar E = - Scalar E
11 eqid 1 Scalar E = 1 Scalar E
12 7 3 8 9 4 5 10 11 lines E V L = x Base E , y Base E x p Base E | t Base Scalar E p = 1 Scalar E - Scalar E t · ˙ x + ˙ t · ˙ y
13 6 12 mp1i I Fin L = x Base E , y Base E x p Base E | t Base Scalar E p = 1 Scalar E - Scalar E t · ˙ x + ˙ t · ˙ y
14 id I Fin I Fin
15 14 1 7 rrxbasefi I Fin Base E = I
16 15 2 eqtr4di I Fin Base E = P
17 16 difeq1d I Fin Base E x = P x
18 1 rrxsca I Fin Scalar E = fld
19 18 fveq2d I Fin Base Scalar E = Base fld
20 rebase = Base fld
21 19 20 eqtr4di I Fin Base Scalar E =
22 18 fveq2d I Fin 1 Scalar E = 1 fld
23 re1r 1 = 1 fld
24 22 23 eqtr4di I Fin 1 Scalar E = 1
25 24 oveq1d I Fin 1 Scalar E - Scalar E t = 1 - Scalar E t
26 25 adantr I Fin t Base Scalar E 1 Scalar E - Scalar E t = 1 - Scalar E t
27 18 fveq2d I Fin - Scalar E = - fld
28 27 oveqd I Fin 1 - Scalar E t = 1 - fld t
29 28 adantr I Fin t Base Scalar E 1 - Scalar E t = 1 - fld t
30 21 eleq2d I Fin t Base Scalar E t
31 1re 1
32 eqid - fld = - fld
33 32 resubgval 1 t 1 t = 1 - fld t
34 33 eqcomd 1 t 1 - fld t = 1 t
35 31 34 mpan t 1 - fld t = 1 t
36 30 35 syl6bi I Fin t Base Scalar E 1 - fld t = 1 t
37 36 imp I Fin t Base Scalar E 1 - fld t = 1 t
38 26 29 37 3eqtrd I Fin t Base Scalar E 1 Scalar E - Scalar E t = 1 t
39 38 oveq1d I Fin t Base Scalar E 1 Scalar E - Scalar E t · ˙ x = 1 t · ˙ x
40 39 oveq1d I Fin t Base Scalar E 1 Scalar E - Scalar E t · ˙ x + ˙ t · ˙ y = 1 t · ˙ x + ˙ t · ˙ y
41 40 eqeq2d I Fin t Base Scalar E p = 1 Scalar E - Scalar E t · ˙ x + ˙ t · ˙ y p = 1 t · ˙ x + ˙ t · ˙ y
42 21 41 rexeqbidva I Fin t Base Scalar E p = 1 Scalar E - Scalar E t · ˙ x + ˙ t · ˙ y t p = 1 t · ˙ x + ˙ t · ˙ y
43 16 42 rabeqbidv I Fin p Base E | t Base Scalar E p = 1 Scalar E - Scalar E t · ˙ x + ˙ t · ˙ y = p P | t p = 1 t · ˙ x + ˙ t · ˙ y
44 16 17 43 mpoeq123dv I Fin x Base E , y Base E x p Base E | t Base Scalar E p = 1 Scalar E - Scalar E t · ˙ x + ˙ t · ˙ y = x P , y P x p P | t p = 1 t · ˙ x + ˙ t · ˙ y
45 13 44 eqtrd I Fin L = x P , y P x p P | t p = 1 t · ˙ x + ˙ t · ˙ y