Step |
Hyp |
Ref |
Expression |
1 |
|
rrxlinesc.e |
⊢ 𝐸 = ( ℝ^ ‘ 𝐼 ) |
2 |
|
rrxlinesc.p |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
3 |
|
rrxlinesc.l |
⊢ 𝐿 = ( LineM ‘ 𝐸 ) |
4 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐸 ) = ( ·𝑠 ‘ 𝐸 ) |
5 |
|
eqid |
⊢ ( +g ‘ 𝐸 ) = ( +g ‘ 𝐸 ) |
6 |
1 2 3 4 5
|
rrxlines |
⊢ ( 𝐼 ∈ Fin → 𝐿 = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠 ‘ 𝐸 ) 𝑥 ) ( +g ‘ 𝐸 ) ( 𝑡 ( ·𝑠 ‘ 𝐸 ) 𝑦 ) ) } ) ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 ) |
8 |
|
simpll1 |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝐼 ∈ Fin ) |
9 |
|
1red |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → 1 ∈ ℝ ) |
10 |
|
simpr |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℝ ) |
11 |
9 10
|
resubcld |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → ( 1 − 𝑡 ) ∈ ℝ ) |
12 |
|
id |
⊢ ( 𝐼 ∈ Fin → 𝐼 ∈ Fin ) |
13 |
12 1 7
|
rrxbasefi |
⊢ ( 𝐼 ∈ Fin → ( Base ‘ 𝐸 ) = ( ℝ ↑m 𝐼 ) ) |
14 |
2 13
|
eqtr4id |
⊢ ( 𝐼 ∈ Fin → 𝑃 = ( Base ‘ 𝐸 ) ) |
15 |
14
|
eleq2d |
⊢ ( 𝐼 ∈ Fin → ( 𝑥 ∈ 𝑃 ↔ 𝑥 ∈ ( Base ‘ 𝐸 ) ) ) |
16 |
15
|
biimpa |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝑥 ∈ ( Base ‘ 𝐸 ) ) |
19 |
|
eldifi |
⊢ ( 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) → 𝑦 ∈ 𝑃 ) |
20 |
14
|
eleq2d |
⊢ ( 𝐼 ∈ Fin → ( 𝑦 ∈ 𝑃 ↔ 𝑦 ∈ ( Base ‘ 𝐸 ) ) ) |
21 |
19 20
|
syl5ib |
⊢ ( 𝐼 ∈ Fin → ( 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) → 𝑦 ∈ ( Base ‘ 𝐸 ) ) ) |
22 |
21
|
a1d |
⊢ ( 𝐼 ∈ Fin → ( 𝑥 ∈ 𝑃 → ( 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) → 𝑦 ∈ ( Base ‘ 𝐸 ) ) ) ) |
23 |
22
|
3imp |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → 𝑦 ∈ ( Base ‘ 𝐸 ) ) |
24 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝑦 ∈ ( Base ‘ 𝐸 ) ) |
25 |
14
|
3ad2ant1 |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → 𝑃 = ( Base ‘ 𝐸 ) ) |
26 |
25
|
eleq2d |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → ( 𝑝 ∈ 𝑃 ↔ 𝑝 ∈ ( Base ‘ 𝐸 ) ) ) |
27 |
26
|
biimpa |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ∈ ( Base ‘ 𝐸 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝑝 ∈ ( Base ‘ 𝐸 ) ) |
29 |
1 7 4 8 11 18 24 28 5 10
|
rrxplusgvscavalb |
⊢ ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑡 ∈ ℝ ) → ( 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠 ‘ 𝐸 ) 𝑥 ) ( +g ‘ 𝐸 ) ( 𝑡 ( ·𝑠 ‘ 𝐸 ) 𝑦 ) ) ↔ ∀ 𝑖 ∈ 𝐼 ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
30 |
29
|
rexbidva |
⊢ ( ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠 ‘ 𝐸 ) 𝑥 ) ( +g ‘ 𝐸 ) ( 𝑡 ( ·𝑠 ‘ 𝐸 ) 𝑦 ) ) ↔ ∃ 𝑡 ∈ ℝ ∀ 𝑖 ∈ 𝐼 ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) ) ) |
31 |
30
|
rabbidva |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑥 ∈ 𝑃 ∧ 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠 ‘ 𝐸 ) 𝑥 ) ( +g ‘ 𝐸 ) ( 𝑡 ( ·𝑠 ‘ 𝐸 ) 𝑦 ) ) } = { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ ∀ 𝑖 ∈ 𝐼 ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) } ) |
32 |
31
|
mpoeq3dva |
⊢ ( 𝐼 ∈ Fin → ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠 ‘ 𝐸 ) 𝑥 ) ( +g ‘ 𝐸 ) ( 𝑡 ( ·𝑠 ‘ 𝐸 ) 𝑦 ) ) } ) = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ ∀ 𝑖 ∈ 𝐼 ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) } ) ) |
33 |
6 32
|
eqtrd |
⊢ ( 𝐼 ∈ Fin → 𝐿 = ( 𝑥 ∈ 𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝 ∈ 𝑃 ∣ ∃ 𝑡 ∈ ℝ ∀ 𝑖 ∈ 𝐼 ( 𝑝 ‘ 𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥 ‘ 𝑖 ) ) + ( 𝑡 · ( 𝑦 ‘ 𝑖 ) ) ) } ) ) |