Metamath Proof Explorer


Theorem rrxlinesc

Description: Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension, expressed by their coordinates. (Contributed by AV, 13-Feb-2023)

Ref Expression
Hypotheses rrxlinesc.e 𝐸 = ( ℝ^ ‘ 𝐼 )
rrxlinesc.p 𝑃 = ( ℝ ↑m 𝐼 )
rrxlinesc.l 𝐿 = ( LineM𝐸 )
Assertion rrxlinesc ( 𝐼 ∈ Fin → 𝐿 = ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ ∀ 𝑖𝐼 ( 𝑝𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥𝑖 ) ) + ( 𝑡 · ( 𝑦𝑖 ) ) ) } ) )

Proof

Step Hyp Ref Expression
1 rrxlinesc.e 𝐸 = ( ℝ^ ‘ 𝐼 )
2 rrxlinesc.p 𝑃 = ( ℝ ↑m 𝐼 )
3 rrxlinesc.l 𝐿 = ( LineM𝐸 )
4 eqid ( ·𝑠𝐸 ) = ( ·𝑠𝐸 )
5 eqid ( +g𝐸 ) = ( +g𝐸 )
6 1 2 3 4 5 rrxlines ( 𝐼 ∈ Fin → 𝐿 = ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠𝐸 ) 𝑥 ) ( +g𝐸 ) ( 𝑡 ( ·𝑠𝐸 ) 𝑦 ) ) } ) )
7 eqid ( Base ‘ 𝐸 ) = ( Base ‘ 𝐸 )
8 simpll1 ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝐼 ∈ Fin )
9 1red ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝𝑃 ) ∧ 𝑡 ∈ ℝ ) → 1 ∈ ℝ )
10 simpr ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝑡 ∈ ℝ )
11 9 10 resubcld ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝𝑃 ) ∧ 𝑡 ∈ ℝ ) → ( 1 − 𝑡 ) ∈ ℝ )
12 id ( 𝐼 ∈ Fin → 𝐼 ∈ Fin )
13 12 1 7 rrxbasefi ( 𝐼 ∈ Fin → ( Base ‘ 𝐸 ) = ( ℝ ↑m 𝐼 ) )
14 2 13 eqtr4id ( 𝐼 ∈ Fin → 𝑃 = ( Base ‘ 𝐸 ) )
15 14 eleq2d ( 𝐼 ∈ Fin → ( 𝑥𝑃𝑥 ∈ ( Base ‘ 𝐸 ) ) )
16 15 biimpa ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃 ) → 𝑥 ∈ ( Base ‘ 𝐸 ) )
17 16 3adant3 ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → 𝑥 ∈ ( Base ‘ 𝐸 ) )
18 17 ad2antrr ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝑥 ∈ ( Base ‘ 𝐸 ) )
19 eldifi ( 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) → 𝑦𝑃 )
20 14 eleq2d ( 𝐼 ∈ Fin → ( 𝑦𝑃𝑦 ∈ ( Base ‘ 𝐸 ) ) )
21 19 20 syl5ib ( 𝐼 ∈ Fin → ( 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) → 𝑦 ∈ ( Base ‘ 𝐸 ) ) )
22 21 a1d ( 𝐼 ∈ Fin → ( 𝑥𝑃 → ( 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) → 𝑦 ∈ ( Base ‘ 𝐸 ) ) ) )
23 22 3imp ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → 𝑦 ∈ ( Base ‘ 𝐸 ) )
24 23 ad2antrr ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝑦 ∈ ( Base ‘ 𝐸 ) )
25 14 3ad2ant1 ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → 𝑃 = ( Base ‘ 𝐸 ) )
26 25 eleq2d ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → ( 𝑝𝑃𝑝 ∈ ( Base ‘ 𝐸 ) ) )
27 26 biimpa ( ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝𝑃 ) → 𝑝 ∈ ( Base ‘ 𝐸 ) )
28 27 adantr ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝𝑃 ) ∧ 𝑡 ∈ ℝ ) → 𝑝 ∈ ( Base ‘ 𝐸 ) )
29 1 7 4 8 11 18 24 28 5 10 rrxplusgvscavalb ( ( ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝𝑃 ) ∧ 𝑡 ∈ ℝ ) → ( 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠𝐸 ) 𝑥 ) ( +g𝐸 ) ( 𝑡 ( ·𝑠𝐸 ) 𝑦 ) ) ↔ ∀ 𝑖𝐼 ( 𝑝𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥𝑖 ) ) + ( 𝑡 · ( 𝑦𝑖 ) ) ) ) )
30 29 rexbidva ( ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) ∧ 𝑝𝑃 ) → ( ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠𝐸 ) 𝑥 ) ( +g𝐸 ) ( 𝑡 ( ·𝑠𝐸 ) 𝑦 ) ) ↔ ∃ 𝑡 ∈ ℝ ∀ 𝑖𝐼 ( 𝑝𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥𝑖 ) ) + ( 𝑡 · ( 𝑦𝑖 ) ) ) ) )
31 30 rabbidva ( ( 𝐼 ∈ Fin ∧ 𝑥𝑃𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ) → { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠𝐸 ) 𝑥 ) ( +g𝐸 ) ( 𝑡 ( ·𝑠𝐸 ) 𝑦 ) ) } = { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ ∀ 𝑖𝐼 ( 𝑝𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥𝑖 ) ) + ( 𝑡 · ( 𝑦𝑖 ) ) ) } )
32 31 mpoeq3dva ( 𝐼 ∈ Fin → ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ 𝑝 = ( ( ( 1 − 𝑡 ) ( ·𝑠𝐸 ) 𝑥 ) ( +g𝐸 ) ( 𝑡 ( ·𝑠𝐸 ) 𝑦 ) ) } ) = ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ ∀ 𝑖𝐼 ( 𝑝𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥𝑖 ) ) + ( 𝑡 · ( 𝑦𝑖 ) ) ) } ) )
33 6 32 eqtrd ( 𝐼 ∈ Fin → 𝐿 = ( 𝑥𝑃 , 𝑦 ∈ ( 𝑃 ∖ { 𝑥 } ) ↦ { 𝑝𝑃 ∣ ∃ 𝑡 ∈ ℝ ∀ 𝑖𝐼 ( 𝑝𝑖 ) = ( ( ( 1 − 𝑡 ) · ( 𝑥𝑖 ) ) + ( 𝑡 · ( 𝑦𝑖 ) ) ) } ) )