Metamath Proof Explorer


Theorem rrxlinesc

Description: Definition of lines passing through two different points in a generalized real Euclidean space of finite dimension, expressed by their coordinates. (Contributed by AV, 13-Feb-2023)

Ref Expression
Hypotheses rrxlinesc.e E=msup
rrxlinesc.p P=I
rrxlinesc.l L=LineME
Assertion rrxlinesc IFinL=xP,yPxpP|tiIpi=1txi+tyi

Proof

Step Hyp Ref Expression
1 rrxlinesc.e E=msup
2 rrxlinesc.p P=I
3 rrxlinesc.l L=LineME
4 eqid E=E
5 eqid +E=+E
6 1 2 3 4 5 rrxlines IFinL=xP,yPxpP|tp=1tEx+EtEy
7 eqid BaseE=BaseE
8 simpll1 IFinxPyPxpPtIFin
9 1red IFinxPyPxpPt1
10 simpr IFinxPyPxpPtt
11 9 10 resubcld IFinxPyPxpPt1t
12 id IFinIFin
13 12 1 7 rrxbasefi IFinBaseE=I
14 2 13 eqtr4id IFinP=BaseE
15 14 eleq2d IFinxPxBaseE
16 15 biimpa IFinxPxBaseE
17 16 3adant3 IFinxPyPxxBaseE
18 17 ad2antrr IFinxPyPxpPtxBaseE
19 eldifi yPxyP
20 14 eleq2d IFinyPyBaseE
21 19 20 imbitrid IFinyPxyBaseE
22 21 a1d IFinxPyPxyBaseE
23 22 3imp IFinxPyPxyBaseE
24 23 ad2antrr IFinxPyPxpPtyBaseE
25 14 3ad2ant1 IFinxPyPxP=BaseE
26 25 eleq2d IFinxPyPxpPpBaseE
27 26 biimpa IFinxPyPxpPpBaseE
28 27 adantr IFinxPyPxpPtpBaseE
29 1 7 4 8 11 18 24 28 5 10 rrxplusgvscavalb IFinxPyPxpPtp=1tEx+EtEyiIpi=1txi+tyi
30 29 rexbidva IFinxPyPxpPtp=1tEx+EtEytiIpi=1txi+tyi
31 30 rabbidva IFinxPyPxpP|tp=1tEx+EtEy=pP|tiIpi=1txi+tyi
32 31 mpoeq3dva IFinxP,yPxpP|tp=1tEx+EtEy=xP,yPxpP|tiIpi=1txi+tyi
33 6 32 eqtrd IFinL=xP,yPxpP|tiIpi=1txi+tyi