Step |
Hyp |
Ref |
Expression |
1 |
|
spheres.b |
|- B = ( Base ` W ) |
2 |
|
spheres.l |
|- S = ( Sphere ` W ) |
3 |
|
spheres.d |
|- D = ( dist ` W ) |
4 |
2
|
a1i |
|- ( W e. V -> S = ( Sphere ` W ) ) |
5 |
|
df-sph |
|- Sphere = ( w e. _V |-> ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) ) |
6 |
|
fveq2 |
|- ( w = W -> ( Base ` w ) = ( Base ` W ) ) |
7 |
1
|
eqcomi |
|- ( Base ` W ) = B |
8 |
7
|
a1i |
|- ( w = W -> ( Base ` W ) = B ) |
9 |
6 8
|
eqtrd |
|- ( w = W -> ( Base ` w ) = B ) |
10 |
|
eqidd |
|- ( w = W -> ( 0 [,] +oo ) = ( 0 [,] +oo ) ) |
11 |
|
fveq2 |
|- ( w = W -> ( dist ` w ) = ( dist ` W ) ) |
12 |
3
|
eqcomi |
|- ( dist ` W ) = D |
13 |
12
|
a1i |
|- ( w = W -> ( dist ` W ) = D ) |
14 |
11 13
|
eqtrd |
|- ( w = W -> ( dist ` w ) = D ) |
15 |
14
|
oveqd |
|- ( w = W -> ( p ( dist ` w ) x ) = ( p D x ) ) |
16 |
15
|
eqeq1d |
|- ( w = W -> ( ( p ( dist ` w ) x ) = r <-> ( p D x ) = r ) ) |
17 |
9 16
|
rabeqbidv |
|- ( w = W -> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } = { p e. B | ( p D x ) = r } ) |
18 |
9 10 17
|
mpoeq123dv |
|- ( w = W -> ( x e. ( Base ` w ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` w ) | ( p ( dist ` w ) x ) = r } ) = ( x e. B , r e. ( 0 [,] +oo ) |-> { p e. B | ( p D x ) = r } ) ) |
19 |
|
elex |
|- ( W e. V -> W e. _V ) |
20 |
|
fvex |
|- ( Base ` W ) e. _V |
21 |
1 20
|
eqeltri |
|- B e. _V |
22 |
|
ovex |
|- ( 0 [,] +oo ) e. _V |
23 |
21 22
|
mpoex |
|- ( x e. B , r e. ( 0 [,] +oo ) |-> { p e. B | ( p D x ) = r } ) e. _V |
24 |
23
|
a1i |
|- ( W e. V -> ( x e. B , r e. ( 0 [,] +oo ) |-> { p e. B | ( p D x ) = r } ) e. _V ) |
25 |
5 18 19 24
|
fvmptd3 |
|- ( W e. V -> ( Sphere ` W ) = ( x e. B , r e. ( 0 [,] +oo ) |-> { p e. B | ( p D x ) = r } ) ) |
26 |
4 25
|
eqtrd |
|- ( W e. V -> S = ( x e. B , r e. ( 0 [,] +oo ) |-> { p e. B | ( p D x ) = r } ) ) |