| Step | Hyp | Ref | Expression | 
						
							| 1 |  | spheres.b |  |-  B = ( Base ` W ) | 
						
							| 2 |  | spheres.l |  |-  S = ( Sphere ` W ) | 
						
							| 3 |  | spheres.d |  |-  D = ( dist ` W ) | 
						
							| 4 | 1 2 3 | spheres |  |-  ( W e. V -> S = ( x e. B , r e. ( 0 [,] +oo ) |-> { p e. B | ( p D x ) = r } ) ) | 
						
							| 5 | 4 | 3ad2ant1 |  |-  ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> S = ( x e. B , r e. ( 0 [,] +oo ) |-> { p e. B | ( p D x ) = r } ) ) | 
						
							| 6 |  | oveq2 |  |-  ( x = X -> ( p D x ) = ( p D X ) ) | 
						
							| 7 |  | id |  |-  ( r = R -> r = R ) | 
						
							| 8 | 6 7 | eqeqan12d |  |-  ( ( x = X /\ r = R ) -> ( ( p D x ) = r <-> ( p D X ) = R ) ) | 
						
							| 9 | 8 | rabbidv |  |-  ( ( x = X /\ r = R ) -> { p e. B | ( p D x ) = r } = { p e. B | ( p D X ) = R } ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) /\ ( x = X /\ r = R ) ) -> { p e. B | ( p D x ) = r } = { p e. B | ( p D X ) = R } ) | 
						
							| 11 |  | simp2 |  |-  ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> X e. B ) | 
						
							| 12 |  | simp3 |  |-  ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> R e. ( 0 [,] +oo ) ) | 
						
							| 13 | 1 | fvexi |  |-  B e. _V | 
						
							| 14 | 13 | rabex |  |-  { p e. B | ( p D X ) = R } e. _V | 
						
							| 15 | 14 | a1i |  |-  ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> { p e. B | ( p D X ) = R } e. _V ) | 
						
							| 16 | 5 10 11 12 15 | ovmpod |  |-  ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> ( X S R ) = { p e. B | ( p D X ) = R } ) |