Step |
Hyp |
Ref |
Expression |
1 |
|
spheres.b |
|- B = ( Base ` W ) |
2 |
|
spheres.l |
|- S = ( Sphere ` W ) |
3 |
|
spheres.d |
|- D = ( dist ` W ) |
4 |
1 2 3
|
spheres |
|- ( W e. V -> S = ( x e. B , r e. ( 0 [,] +oo ) |-> { p e. B | ( p D x ) = r } ) ) |
5 |
4
|
3ad2ant1 |
|- ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> S = ( x e. B , r e. ( 0 [,] +oo ) |-> { p e. B | ( p D x ) = r } ) ) |
6 |
|
oveq2 |
|- ( x = X -> ( p D x ) = ( p D X ) ) |
7 |
|
id |
|- ( r = R -> r = R ) |
8 |
6 7
|
eqeqan12d |
|- ( ( x = X /\ r = R ) -> ( ( p D x ) = r <-> ( p D X ) = R ) ) |
9 |
8
|
rabbidv |
|- ( ( x = X /\ r = R ) -> { p e. B | ( p D x ) = r } = { p e. B | ( p D X ) = R } ) |
10 |
9
|
adantl |
|- ( ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) /\ ( x = X /\ r = R ) ) -> { p e. B | ( p D x ) = r } = { p e. B | ( p D X ) = R } ) |
11 |
|
simp2 |
|- ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> X e. B ) |
12 |
|
simp3 |
|- ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> R e. ( 0 [,] +oo ) ) |
13 |
1
|
fvexi |
|- B e. _V |
14 |
13
|
rabex |
|- { p e. B | ( p D X ) = R } e. _V |
15 |
14
|
a1i |
|- ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> { p e. B | ( p D X ) = R } e. _V ) |
16 |
5 10 11 12 15
|
ovmpod |
|- ( ( W e. V /\ X e. B /\ R e. ( 0 [,] +oo ) ) -> ( X S R ) = { p e. B | ( p D X ) = R } ) |