Step |
Hyp |
Ref |
Expression |
1 |
|
rrxspheres.e |
|- E = ( RR^ ` I ) |
2 |
|
rrxspheres.p |
|- P = ( RR ^m I ) |
3 |
|
rrxspheres.d |
|- D = ( dist ` E ) |
4 |
|
rrxspheres.s |
|- S = ( Sphere ` E ) |
5 |
1
|
fvexi |
|- E e. _V |
6 |
|
id |
|- ( I e. Fin -> I e. Fin ) |
7 |
|
eqid |
|- ( Base ` E ) = ( Base ` E ) |
8 |
6 1 7
|
rrxbasefi |
|- ( I e. Fin -> ( Base ` E ) = ( RR ^m I ) ) |
9 |
2 8
|
eqtr4id |
|- ( I e. Fin -> P = ( Base ` E ) ) |
10 |
9
|
eleq2d |
|- ( I e. Fin -> ( M e. P <-> M e. ( Base ` E ) ) ) |
11 |
10
|
biimpa |
|- ( ( I e. Fin /\ M e. P ) -> M e. ( Base ` E ) ) |
12 |
11
|
3adant3 |
|- ( ( I e. Fin /\ M e. P /\ R e. RR ) -> M e. ( Base ` E ) ) |
13 |
12
|
adantl |
|- ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> M e. ( Base ` E ) ) |
14 |
|
rexr |
|- ( R e. RR -> R e. RR* ) |
15 |
14
|
3ad2ant3 |
|- ( ( I e. Fin /\ M e. P /\ R e. RR ) -> R e. RR* ) |
16 |
15
|
anim2i |
|- ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> ( 0 <_ R /\ R e. RR* ) ) |
17 |
16
|
ancomd |
|- ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> ( R e. RR* /\ 0 <_ R ) ) |
18 |
|
elxrge0 |
|- ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R ) ) |
19 |
17 18
|
sylibr |
|- ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> R e. ( 0 [,] +oo ) ) |
20 |
7 4 3
|
sphere |
|- ( ( E e. _V /\ M e. ( Base ` E ) /\ R e. ( 0 [,] +oo ) ) -> ( M S R ) = { p e. ( Base ` E ) | ( p D M ) = R } ) |
21 |
5 13 19 20
|
mp3an2i |
|- ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> ( M S R ) = { p e. ( Base ` E ) | ( p D M ) = R } ) |
22 |
|
simp1 |
|- ( ( I e. Fin /\ M e. P /\ R e. RR ) -> I e. Fin ) |
23 |
22 1 7
|
rrxbasefi |
|- ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( Base ` E ) = ( RR ^m I ) ) |
24 |
23 2
|
eqtr4di |
|- ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( Base ` E ) = P ) |
25 |
24
|
adantl |
|- ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> ( Base ` E ) = P ) |
26 |
25
|
rabeqdv |
|- ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> { p e. ( Base ` E ) | ( p D M ) = R } = { p e. P | ( p D M ) = R } ) |
27 |
21 26
|
eqtrd |
|- ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> ( M S R ) = { p e. P | ( p D M ) = R } ) |
28 |
27
|
ex |
|- ( 0 <_ R -> ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( M S R ) = { p e. P | ( p D M ) = R } ) ) |
29 |
7 4 3
|
spheres |
|- ( E e. _V -> S = ( x e. ( Base ` E ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` E ) | ( p D x ) = r } ) ) |
30 |
5 29
|
ax-mp |
|- S = ( x e. ( Base ` E ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` E ) | ( p D x ) = r } ) |
31 |
|
fvex |
|- ( Base ` E ) e. _V |
32 |
31
|
rabex |
|- { p e. ( Base ` E ) | ( p D x ) = r } e. _V |
33 |
30 32
|
dmmpo |
|- dom S = ( ( Base ` E ) X. ( 0 [,] +oo ) ) |
34 |
|
0xr |
|- 0 e. RR* |
35 |
|
pnfxr |
|- +oo e. RR* |
36 |
34 35
|
pm3.2i |
|- ( 0 e. RR* /\ +oo e. RR* ) |
37 |
|
elicc1 |
|- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) ) |
38 |
36 37
|
mp1i |
|- ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) ) |
39 |
|
simp2 |
|- ( ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) -> 0 <_ R ) |
40 |
38 39
|
syl6bi |
|- ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( R e. ( 0 [,] +oo ) -> 0 <_ R ) ) |
41 |
40
|
con3d |
|- ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( -. 0 <_ R -> -. R e. ( 0 [,] +oo ) ) ) |
42 |
41
|
imp |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> -. R e. ( 0 [,] +oo ) ) |
43 |
42
|
intnand |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> -. ( M e. ( Base ` E ) /\ R e. ( 0 [,] +oo ) ) ) |
44 |
|
ndmovg |
|- ( ( dom S = ( ( Base ` E ) X. ( 0 [,] +oo ) ) /\ -. ( M e. ( Base ` E ) /\ R e. ( 0 [,] +oo ) ) ) -> ( M S R ) = (/) ) |
45 |
33 43 44
|
sylancr |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> ( M S R ) = (/) ) |
46 |
1
|
fveq2i |
|- ( dist ` E ) = ( dist ` ( RR^ ` I ) ) |
47 |
3 46
|
eqtri |
|- D = ( dist ` ( RR^ ` I ) ) |
48 |
47
|
rrxmetfi |
|- ( I e. Fin -> D e. ( Met ` ( RR ^m I ) ) ) |
49 |
48
|
3ad2ant1 |
|- ( ( I e. Fin /\ M e. P /\ R e. RR ) -> D e. ( Met ` ( RR ^m I ) ) ) |
50 |
49
|
adantr |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> D e. ( Met ` ( RR ^m I ) ) ) |
51 |
2
|
fveq2i |
|- ( Met ` P ) = ( Met ` ( RR ^m I ) ) |
52 |
50 51
|
eleqtrrdi |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> D e. ( Met ` P ) ) |
53 |
|
simpr |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> p e. P ) |
54 |
|
simp2 |
|- ( ( I e. Fin /\ M e. P /\ R e. RR ) -> M e. P ) |
55 |
54
|
adantr |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> M e. P ) |
56 |
|
metge0 |
|- ( ( D e. ( Met ` P ) /\ p e. P /\ M e. P ) -> 0 <_ ( p D M ) ) |
57 |
52 53 55 56
|
syl3anc |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> 0 <_ ( p D M ) ) |
58 |
|
breq2 |
|- ( ( p D M ) = R -> ( 0 <_ ( p D M ) <-> 0 <_ R ) ) |
59 |
57 58
|
syl5ibcom |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> ( ( p D M ) = R -> 0 <_ R ) ) |
60 |
59
|
con3d |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> ( -. 0 <_ R -> -. ( p D M ) = R ) ) |
61 |
60
|
impancom |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> ( p e. P -> -. ( p D M ) = R ) ) |
62 |
61
|
imp |
|- ( ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) /\ p e. P ) -> -. ( p D M ) = R ) |
63 |
62
|
ralrimiva |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> A. p e. P -. ( p D M ) = R ) |
64 |
|
eqcom |
|- ( (/) = { p e. P | ( p D M ) = R } <-> { p e. P | ( p D M ) = R } = (/) ) |
65 |
|
rabeq0 |
|- ( { p e. P | ( p D M ) = R } = (/) <-> A. p e. P -. ( p D M ) = R ) |
66 |
64 65
|
bitri |
|- ( (/) = { p e. P | ( p D M ) = R } <-> A. p e. P -. ( p D M ) = R ) |
67 |
63 66
|
sylibr |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> (/) = { p e. P | ( p D M ) = R } ) |
68 |
45 67
|
eqtrd |
|- ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> ( M S R ) = { p e. P | ( p D M ) = R } ) |
69 |
68
|
expcom |
|- ( -. 0 <_ R -> ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( M S R ) = { p e. P | ( p D M ) = R } ) ) |
70 |
28 69
|
pm2.61i |
|- ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( M S R ) = { p e. P | ( p D M ) = R } ) |