| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rrxspheres.e |  |-  E = ( RR^ ` I ) | 
						
							| 2 |  | rrxspheres.p |  |-  P = ( RR ^m I ) | 
						
							| 3 |  | rrxspheres.d |  |-  D = ( dist ` E ) | 
						
							| 4 |  | rrxspheres.s |  |-  S = ( Sphere ` E ) | 
						
							| 5 | 1 | fvexi |  |-  E e. _V | 
						
							| 6 |  | id |  |-  ( I e. Fin -> I e. Fin ) | 
						
							| 7 |  | eqid |  |-  ( Base ` E ) = ( Base ` E ) | 
						
							| 8 | 6 1 7 | rrxbasefi |  |-  ( I e. Fin -> ( Base ` E ) = ( RR ^m I ) ) | 
						
							| 9 | 2 8 | eqtr4id |  |-  ( I e. Fin -> P = ( Base ` E ) ) | 
						
							| 10 | 9 | eleq2d |  |-  ( I e. Fin -> ( M e. P <-> M e. ( Base ` E ) ) ) | 
						
							| 11 | 10 | biimpa |  |-  ( ( I e. Fin /\ M e. P ) -> M e. ( Base ` E ) ) | 
						
							| 12 | 11 | 3adant3 |  |-  ( ( I e. Fin /\ M e. P /\ R e. RR ) -> M e. ( Base ` E ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> M e. ( Base ` E ) ) | 
						
							| 14 |  | rexr |  |-  ( R e. RR -> R e. RR* ) | 
						
							| 15 | 14 | 3ad2ant3 |  |-  ( ( I e. Fin /\ M e. P /\ R e. RR ) -> R e. RR* ) | 
						
							| 16 | 15 | anim2i |  |-  ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> ( 0 <_ R /\ R e. RR* ) ) | 
						
							| 17 | 16 | ancomd |  |-  ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> ( R e. RR* /\ 0 <_ R ) ) | 
						
							| 18 |  | elxrge0 |  |-  ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R ) ) | 
						
							| 19 | 17 18 | sylibr |  |-  ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> R e. ( 0 [,] +oo ) ) | 
						
							| 20 | 7 4 3 | sphere |  |-  ( ( E e. _V /\ M e. ( Base ` E ) /\ R e. ( 0 [,] +oo ) ) -> ( M S R ) = { p e. ( Base ` E ) | ( p D M ) = R } ) | 
						
							| 21 | 5 13 19 20 | mp3an2i |  |-  ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> ( M S R ) = { p e. ( Base ` E ) | ( p D M ) = R } ) | 
						
							| 22 |  | simp1 |  |-  ( ( I e. Fin /\ M e. P /\ R e. RR ) -> I e. Fin ) | 
						
							| 23 | 22 1 7 | rrxbasefi |  |-  ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( Base ` E ) = ( RR ^m I ) ) | 
						
							| 24 | 23 2 | eqtr4di |  |-  ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( Base ` E ) = P ) | 
						
							| 25 | 24 | adantl |  |-  ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> ( Base ` E ) = P ) | 
						
							| 26 | 25 | rabeqdv |  |-  ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> { p e. ( Base ` E ) | ( p D M ) = R } = { p e. P | ( p D M ) = R } ) | 
						
							| 27 | 21 26 | eqtrd |  |-  ( ( 0 <_ R /\ ( I e. Fin /\ M e. P /\ R e. RR ) ) -> ( M S R ) = { p e. P | ( p D M ) = R } ) | 
						
							| 28 | 27 | ex |  |-  ( 0 <_ R -> ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( M S R ) = { p e. P | ( p D M ) = R } ) ) | 
						
							| 29 | 7 4 3 | spheres |  |-  ( E e. _V -> S = ( x e. ( Base ` E ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` E ) | ( p D x ) = r } ) ) | 
						
							| 30 | 5 29 | ax-mp |  |-  S = ( x e. ( Base ` E ) , r e. ( 0 [,] +oo ) |-> { p e. ( Base ` E ) | ( p D x ) = r } ) | 
						
							| 31 |  | fvex |  |-  ( Base ` E ) e. _V | 
						
							| 32 | 31 | rabex |  |-  { p e. ( Base ` E ) | ( p D x ) = r } e. _V | 
						
							| 33 | 30 32 | dmmpo |  |-  dom S = ( ( Base ` E ) X. ( 0 [,] +oo ) ) | 
						
							| 34 |  | 0xr |  |-  0 e. RR* | 
						
							| 35 |  | pnfxr |  |-  +oo e. RR* | 
						
							| 36 | 34 35 | pm3.2i |  |-  ( 0 e. RR* /\ +oo e. RR* ) | 
						
							| 37 |  | elicc1 |  |-  ( ( 0 e. RR* /\ +oo e. RR* ) -> ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) ) | 
						
							| 38 | 36 37 | mp1i |  |-  ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( R e. ( 0 [,] +oo ) <-> ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) ) ) | 
						
							| 39 |  | simp2 |  |-  ( ( R e. RR* /\ 0 <_ R /\ R <_ +oo ) -> 0 <_ R ) | 
						
							| 40 | 38 39 | biimtrdi |  |-  ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( R e. ( 0 [,] +oo ) -> 0 <_ R ) ) | 
						
							| 41 | 40 | con3d |  |-  ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( -. 0 <_ R -> -. R e. ( 0 [,] +oo ) ) ) | 
						
							| 42 | 41 | imp |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> -. R e. ( 0 [,] +oo ) ) | 
						
							| 43 | 42 | intnand |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> -. ( M e. ( Base ` E ) /\ R e. ( 0 [,] +oo ) ) ) | 
						
							| 44 |  | ndmovg |  |-  ( ( dom S = ( ( Base ` E ) X. ( 0 [,] +oo ) ) /\ -. ( M e. ( Base ` E ) /\ R e. ( 0 [,] +oo ) ) ) -> ( M S R ) = (/) ) | 
						
							| 45 | 33 43 44 | sylancr |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> ( M S R ) = (/) ) | 
						
							| 46 | 1 | fveq2i |  |-  ( dist ` E ) = ( dist ` ( RR^ ` I ) ) | 
						
							| 47 | 3 46 | eqtri |  |-  D = ( dist ` ( RR^ ` I ) ) | 
						
							| 48 | 47 | rrxmetfi |  |-  ( I e. Fin -> D e. ( Met ` ( RR ^m I ) ) ) | 
						
							| 49 | 48 | 3ad2ant1 |  |-  ( ( I e. Fin /\ M e. P /\ R e. RR ) -> D e. ( Met ` ( RR ^m I ) ) ) | 
						
							| 50 | 49 | adantr |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> D e. ( Met ` ( RR ^m I ) ) ) | 
						
							| 51 | 2 | fveq2i |  |-  ( Met ` P ) = ( Met ` ( RR ^m I ) ) | 
						
							| 52 | 50 51 | eleqtrrdi |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> D e. ( Met ` P ) ) | 
						
							| 53 |  | simpr |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> p e. P ) | 
						
							| 54 |  | simp2 |  |-  ( ( I e. Fin /\ M e. P /\ R e. RR ) -> M e. P ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> M e. P ) | 
						
							| 56 |  | metge0 |  |-  ( ( D e. ( Met ` P ) /\ p e. P /\ M e. P ) -> 0 <_ ( p D M ) ) | 
						
							| 57 | 52 53 55 56 | syl3anc |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> 0 <_ ( p D M ) ) | 
						
							| 58 |  | breq2 |  |-  ( ( p D M ) = R -> ( 0 <_ ( p D M ) <-> 0 <_ R ) ) | 
						
							| 59 | 57 58 | syl5ibcom |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> ( ( p D M ) = R -> 0 <_ R ) ) | 
						
							| 60 | 59 | con3d |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ p e. P ) -> ( -. 0 <_ R -> -. ( p D M ) = R ) ) | 
						
							| 61 | 60 | impancom |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> ( p e. P -> -. ( p D M ) = R ) ) | 
						
							| 62 | 61 | imp |  |-  ( ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) /\ p e. P ) -> -. ( p D M ) = R ) | 
						
							| 63 | 62 | ralrimiva |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> A. p e. P -. ( p D M ) = R ) | 
						
							| 64 |  | eqcom |  |-  ( (/) = { p e. P | ( p D M ) = R } <-> { p e. P | ( p D M ) = R } = (/) ) | 
						
							| 65 |  | rabeq0 |  |-  ( { p e. P | ( p D M ) = R } = (/) <-> A. p e. P -. ( p D M ) = R ) | 
						
							| 66 | 64 65 | bitri |  |-  ( (/) = { p e. P | ( p D M ) = R } <-> A. p e. P -. ( p D M ) = R ) | 
						
							| 67 | 63 66 | sylibr |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> (/) = { p e. P | ( p D M ) = R } ) | 
						
							| 68 | 45 67 | eqtrd |  |-  ( ( ( I e. Fin /\ M e. P /\ R e. RR ) /\ -. 0 <_ R ) -> ( M S R ) = { p e. P | ( p D M ) = R } ) | 
						
							| 69 | 68 | expcom |  |-  ( -. 0 <_ R -> ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( M S R ) = { p e. P | ( p D M ) = R } ) ) | 
						
							| 70 | 28 69 | pm2.61i |  |-  ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( M S R ) = { p e. P | ( p D M ) = R } ) |