| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sphere.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | 2sphere.e |  |-  E = ( RR^ ` I ) | 
						
							| 3 |  | 2sphere.p |  |-  P = ( RR ^m I ) | 
						
							| 4 |  | 2sphere.s |  |-  S = ( Sphere ` E ) | 
						
							| 5 |  | 2sphere.c |  |-  C = { p e. P | ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } | 
						
							| 6 |  | prfi |  |-  { 1 , 2 } e. Fin | 
						
							| 7 | 1 6 | eqeltri |  |-  I e. Fin | 
						
							| 8 |  | simpl |  |-  ( ( M e. P /\ R e. ( 0 [,) +oo ) ) -> M e. P ) | 
						
							| 9 |  | elrege0 |  |-  ( R e. ( 0 [,) +oo ) <-> ( R e. RR /\ 0 <_ R ) ) | 
						
							| 10 | 9 | simplbi |  |-  ( R e. ( 0 [,) +oo ) -> R e. RR ) | 
						
							| 11 | 10 | adantl |  |-  ( ( M e. P /\ R e. ( 0 [,) +oo ) ) -> R e. RR ) | 
						
							| 12 |  | eqid |  |-  ( dist ` E ) = ( dist ` E ) | 
						
							| 13 | 2 3 12 4 | rrxsphere |  |-  ( ( I e. Fin /\ M e. P /\ R e. RR ) -> ( M S R ) = { p e. P | ( p ( dist ` E ) M ) = R } ) | 
						
							| 14 | 7 8 11 13 | mp3an2i |  |-  ( ( M e. P /\ R e. ( 0 [,) +oo ) ) -> ( M S R ) = { p e. P | ( p ( dist ` E ) M ) = R } ) | 
						
							| 15 | 9 | biimpi |  |-  ( R e. ( 0 [,) +oo ) -> ( R e. RR /\ 0 <_ R ) ) | 
						
							| 16 | 15 | ad2antlr |  |-  ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( R e. RR /\ 0 <_ R ) ) | 
						
							| 17 |  | sqrtsq |  |-  ( ( R e. RR /\ 0 <_ R ) -> ( sqrt ` ( R ^ 2 ) ) = R ) | 
						
							| 18 | 16 17 | syl |  |-  ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( sqrt ` ( R ^ 2 ) ) = R ) | 
						
							| 19 | 18 | eqeq2d |  |-  ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( R ^ 2 ) ) <-> ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) = R ) ) | 
						
							| 20 | 1 3 | rrx2pxel |  |-  ( p e. P -> ( p ` 1 ) e. RR ) | 
						
							| 21 | 20 | adantl |  |-  ( ( M e. P /\ p e. P ) -> ( p ` 1 ) e. RR ) | 
						
							| 22 | 1 3 | rrx2pxel |  |-  ( M e. P -> ( M ` 1 ) e. RR ) | 
						
							| 23 | 22 | adantr |  |-  ( ( M e. P /\ p e. P ) -> ( M ` 1 ) e. RR ) | 
						
							| 24 | 21 23 | resubcld |  |-  ( ( M e. P /\ p e. P ) -> ( ( p ` 1 ) - ( M ` 1 ) ) e. RR ) | 
						
							| 25 | 24 | resqcld |  |-  ( ( M e. P /\ p e. P ) -> ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) e. RR ) | 
						
							| 26 | 1 3 | rrx2pyel |  |-  ( p e. P -> ( p ` 2 ) e. RR ) | 
						
							| 27 | 26 | adantl |  |-  ( ( M e. P /\ p e. P ) -> ( p ` 2 ) e. RR ) | 
						
							| 28 | 1 3 | rrx2pyel |  |-  ( M e. P -> ( M ` 2 ) e. RR ) | 
						
							| 29 | 28 | adantr |  |-  ( ( M e. P /\ p e. P ) -> ( M ` 2 ) e. RR ) | 
						
							| 30 | 27 29 | resubcld |  |-  ( ( M e. P /\ p e. P ) -> ( ( p ` 2 ) - ( M ` 2 ) ) e. RR ) | 
						
							| 31 | 30 | resqcld |  |-  ( ( M e. P /\ p e. P ) -> ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) e. RR ) | 
						
							| 32 | 25 31 | readdcld |  |-  ( ( M e. P /\ p e. P ) -> ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) e. RR ) | 
						
							| 33 | 24 | sqge0d |  |-  ( ( M e. P /\ p e. P ) -> 0 <_ ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) ) | 
						
							| 34 | 30 | sqge0d |  |-  ( ( M e. P /\ p e. P ) -> 0 <_ ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) | 
						
							| 35 | 25 31 33 34 | addge0d |  |-  ( ( M e. P /\ p e. P ) -> 0 <_ ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) | 
						
							| 36 | 32 35 | jca |  |-  ( ( M e. P /\ p e. P ) -> ( ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) e. RR /\ 0 <_ ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) ) | 
						
							| 37 | 36 | adantlr |  |-  ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) e. RR /\ 0 <_ ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) ) | 
						
							| 38 |  | resqcl |  |-  ( R e. RR -> ( R ^ 2 ) e. RR ) | 
						
							| 39 |  | sqge0 |  |-  ( R e. RR -> 0 <_ ( R ^ 2 ) ) | 
						
							| 40 | 38 39 | jca |  |-  ( R e. RR -> ( ( R ^ 2 ) e. RR /\ 0 <_ ( R ^ 2 ) ) ) | 
						
							| 41 | 10 40 | syl |  |-  ( R e. ( 0 [,) +oo ) -> ( ( R ^ 2 ) e. RR /\ 0 <_ ( R ^ 2 ) ) ) | 
						
							| 42 | 41 | ad2antlr |  |-  ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( ( R ^ 2 ) e. RR /\ 0 <_ ( R ^ 2 ) ) ) | 
						
							| 43 |  | sqrt11 |  |-  ( ( ( ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) e. RR /\ 0 <_ ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) /\ ( ( R ^ 2 ) e. RR /\ 0 <_ ( R ^ 2 ) ) ) -> ( ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( R ^ 2 ) ) <-> ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) ) ) | 
						
							| 44 | 37 42 43 | syl2anc |  |-  ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) = ( sqrt ` ( R ^ 2 ) ) <-> ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) ) ) | 
						
							| 45 | 8 | anim1ci |  |-  ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( p e. P /\ M e. P ) ) | 
						
							| 46 |  | 2nn0 |  |-  2 e. NN0 | 
						
							| 47 |  | eqid |  |-  ( EEhil ` 2 ) = ( EEhil ` 2 ) | 
						
							| 48 | 47 | ehlval |  |-  ( 2 e. NN0 -> ( EEhil ` 2 ) = ( RR^ ` ( 1 ... 2 ) ) ) | 
						
							| 49 | 46 48 | ax-mp |  |-  ( EEhil ` 2 ) = ( RR^ ` ( 1 ... 2 ) ) | 
						
							| 50 |  | fz12pr |  |-  ( 1 ... 2 ) = { 1 , 2 } | 
						
							| 51 | 50 1 | eqtr4i |  |-  ( 1 ... 2 ) = I | 
						
							| 52 | 51 | fveq2i |  |-  ( RR^ ` ( 1 ... 2 ) ) = ( RR^ ` I ) | 
						
							| 53 | 49 52 | eqtri |  |-  ( EEhil ` 2 ) = ( RR^ ` I ) | 
						
							| 54 | 2 53 | eqtr4i |  |-  E = ( EEhil ` 2 ) | 
						
							| 55 | 1 | oveq2i |  |-  ( RR ^m I ) = ( RR ^m { 1 , 2 } ) | 
						
							| 56 | 3 55 | eqtri |  |-  P = ( RR ^m { 1 , 2 } ) | 
						
							| 57 | 54 56 12 | ehl2eudisval |  |-  ( ( p e. P /\ M e. P ) -> ( p ( dist ` E ) M ) = ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) ) | 
						
							| 58 | 45 57 | syl |  |-  ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( p ( dist ` E ) M ) = ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) ) | 
						
							| 59 | 58 | eqcomd |  |-  ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) = ( p ( dist ` E ) M ) ) | 
						
							| 60 | 59 | eqeq1d |  |-  ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( ( sqrt ` ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) ) = R <-> ( p ( dist ` E ) M ) = R ) ) | 
						
							| 61 | 19 44 60 | 3bitr3d |  |-  ( ( ( M e. P /\ R e. ( 0 [,) +oo ) ) /\ p e. P ) -> ( ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) <-> ( p ( dist ` E ) M ) = R ) ) | 
						
							| 62 | 61 | rabbidva |  |-  ( ( M e. P /\ R e. ( 0 [,) +oo ) ) -> { p e. P | ( ( ( ( p ` 1 ) - ( M ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( M ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } = { p e. P | ( p ( dist ` E ) M ) = R } ) | 
						
							| 63 | 5 62 | eqtr2id |  |-  ( ( M e. P /\ R e. ( 0 [,) +oo ) ) -> { p e. P | ( p ( dist ` E ) M ) = R } = C ) | 
						
							| 64 | 14 63 | eqtrd |  |-  ( ( M e. P /\ R e. ( 0 [,) +oo ) ) -> ( M S R ) = C ) |