| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sphere.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | 2sphere.e |  |-  E = ( RR^ ` I ) | 
						
							| 3 |  | 2sphere.p |  |-  P = ( RR ^m I ) | 
						
							| 4 |  | 2sphere.s |  |-  S = ( Sphere ` E ) | 
						
							| 5 |  | 2sphere0.0 |  |-  .0. = ( I X. { 0 } ) | 
						
							| 6 |  | 2sphere0.c |  |-  C = { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } | 
						
							| 7 |  | prex |  |-  { 1 , 2 } e. _V | 
						
							| 8 | 1 7 | eqeltri |  |-  I e. _V | 
						
							| 9 | 5 3 | rrx0el |  |-  ( I e. _V -> .0. e. P ) | 
						
							| 10 | 8 9 | ax-mp |  |-  .0. e. P | 
						
							| 11 |  | eqid |  |-  { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } = { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } | 
						
							| 12 | 1 2 3 4 11 | 2sphere |  |-  ( ( .0. e. P /\ R e. ( 0 [,) +oo ) ) -> ( .0. S R ) = { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } ) | 
						
							| 13 | 10 12 | mpan |  |-  ( R e. ( 0 [,) +oo ) -> ( .0. S R ) = { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } ) | 
						
							| 14 | 5 | fveq1i |  |-  ( .0. ` 1 ) = ( ( I X. { 0 } ) ` 1 ) | 
						
							| 15 |  | c0ex |  |-  0 e. _V | 
						
							| 16 |  | 1ex |  |-  1 e. _V | 
						
							| 17 | 16 | prid1 |  |-  1 e. { 1 , 2 } | 
						
							| 18 | 17 1 | eleqtrri |  |-  1 e. I | 
						
							| 19 |  | fvconst2g |  |-  ( ( 0 e. _V /\ 1 e. I ) -> ( ( I X. { 0 } ) ` 1 ) = 0 ) | 
						
							| 20 | 15 18 19 | mp2an |  |-  ( ( I X. { 0 } ) ` 1 ) = 0 | 
						
							| 21 | 14 20 | eqtri |  |-  ( .0. ` 1 ) = 0 | 
						
							| 22 | 21 | a1i |  |-  ( p e. P -> ( .0. ` 1 ) = 0 ) | 
						
							| 23 | 22 | oveq2d |  |-  ( p e. P -> ( ( p ` 1 ) - ( .0. ` 1 ) ) = ( ( p ` 1 ) - 0 ) ) | 
						
							| 24 | 1 3 | rrx2pxel |  |-  ( p e. P -> ( p ` 1 ) e. RR ) | 
						
							| 25 | 24 | recnd |  |-  ( p e. P -> ( p ` 1 ) e. CC ) | 
						
							| 26 | 25 | subid1d |  |-  ( p e. P -> ( ( p ` 1 ) - 0 ) = ( p ` 1 ) ) | 
						
							| 27 | 23 26 | eqtrd |  |-  ( p e. P -> ( ( p ` 1 ) - ( .0. ` 1 ) ) = ( p ` 1 ) ) | 
						
							| 28 | 27 | oveq1d |  |-  ( p e. P -> ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) = ( ( p ` 1 ) ^ 2 ) ) | 
						
							| 29 | 5 | fveq1i |  |-  ( .0. ` 2 ) = ( ( I X. { 0 } ) ` 2 ) | 
						
							| 30 |  | 2ex |  |-  2 e. _V | 
						
							| 31 | 30 | prid2 |  |-  2 e. { 1 , 2 } | 
						
							| 32 | 31 1 | eleqtrri |  |-  2 e. I | 
						
							| 33 |  | fvconst2g |  |-  ( ( 0 e. _V /\ 2 e. I ) -> ( ( I X. { 0 } ) ` 2 ) = 0 ) | 
						
							| 34 | 15 32 33 | mp2an |  |-  ( ( I X. { 0 } ) ` 2 ) = 0 | 
						
							| 35 | 29 34 | eqtri |  |-  ( .0. ` 2 ) = 0 | 
						
							| 36 | 35 | a1i |  |-  ( p e. P -> ( .0. ` 2 ) = 0 ) | 
						
							| 37 | 36 | oveq2d |  |-  ( p e. P -> ( ( p ` 2 ) - ( .0. ` 2 ) ) = ( ( p ` 2 ) - 0 ) ) | 
						
							| 38 | 1 3 | rrx2pyel |  |-  ( p e. P -> ( p ` 2 ) e. RR ) | 
						
							| 39 | 38 | recnd |  |-  ( p e. P -> ( p ` 2 ) e. CC ) | 
						
							| 40 | 39 | subid1d |  |-  ( p e. P -> ( ( p ` 2 ) - 0 ) = ( p ` 2 ) ) | 
						
							| 41 | 37 40 | eqtrd |  |-  ( p e. P -> ( ( p ` 2 ) - ( .0. ` 2 ) ) = ( p ` 2 ) ) | 
						
							| 42 | 41 | oveq1d |  |-  ( p e. P -> ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) = ( ( p ` 2 ) ^ 2 ) ) | 
						
							| 43 | 28 42 | oveq12d |  |-  ( p e. P -> ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) ) | 
						
							| 44 | 43 | eqeq1d |  |-  ( p e. P -> ( ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) ) ) | 
						
							| 45 | 44 | adantl |  |-  ( ( R e. ( 0 [,) +oo ) /\ p e. P ) -> ( ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) ) ) | 
						
							| 46 | 45 | rabbidva |  |-  ( R e. ( 0 [,) +oo ) -> { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } = { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } ) | 
						
							| 47 | 46 6 | eqtr4di |  |-  ( R e. ( 0 [,) +oo ) -> { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } = C ) | 
						
							| 48 | 13 47 | eqtrd |  |-  ( R e. ( 0 [,) +oo ) -> ( .0. S R ) = C ) |