Step |
Hyp |
Ref |
Expression |
1 |
|
2sphere.i |
|- I = { 1 , 2 } |
2 |
|
2sphere.e |
|- E = ( RR^ ` I ) |
3 |
|
2sphere.p |
|- P = ( RR ^m I ) |
4 |
|
2sphere.s |
|- S = ( Sphere ` E ) |
5 |
|
2sphere0.0 |
|- .0. = ( I X. { 0 } ) |
6 |
|
2sphere0.c |
|- C = { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } |
7 |
|
prex |
|- { 1 , 2 } e. _V |
8 |
1 7
|
eqeltri |
|- I e. _V |
9 |
5 3
|
rrx0el |
|- ( I e. _V -> .0. e. P ) |
10 |
8 9
|
ax-mp |
|- .0. e. P |
11 |
|
eqid |
|- { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } = { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } |
12 |
1 2 3 4 11
|
2sphere |
|- ( ( .0. e. P /\ R e. ( 0 [,) +oo ) ) -> ( .0. S R ) = { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } ) |
13 |
10 12
|
mpan |
|- ( R e. ( 0 [,) +oo ) -> ( .0. S R ) = { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } ) |
14 |
5
|
fveq1i |
|- ( .0. ` 1 ) = ( ( I X. { 0 } ) ` 1 ) |
15 |
|
c0ex |
|- 0 e. _V |
16 |
|
1ex |
|- 1 e. _V |
17 |
16
|
prid1 |
|- 1 e. { 1 , 2 } |
18 |
17 1
|
eleqtrri |
|- 1 e. I |
19 |
|
fvconst2g |
|- ( ( 0 e. _V /\ 1 e. I ) -> ( ( I X. { 0 } ) ` 1 ) = 0 ) |
20 |
15 18 19
|
mp2an |
|- ( ( I X. { 0 } ) ` 1 ) = 0 |
21 |
14 20
|
eqtri |
|- ( .0. ` 1 ) = 0 |
22 |
21
|
a1i |
|- ( p e. P -> ( .0. ` 1 ) = 0 ) |
23 |
22
|
oveq2d |
|- ( p e. P -> ( ( p ` 1 ) - ( .0. ` 1 ) ) = ( ( p ` 1 ) - 0 ) ) |
24 |
1 3
|
rrx2pxel |
|- ( p e. P -> ( p ` 1 ) e. RR ) |
25 |
24
|
recnd |
|- ( p e. P -> ( p ` 1 ) e. CC ) |
26 |
25
|
subid1d |
|- ( p e. P -> ( ( p ` 1 ) - 0 ) = ( p ` 1 ) ) |
27 |
23 26
|
eqtrd |
|- ( p e. P -> ( ( p ` 1 ) - ( .0. ` 1 ) ) = ( p ` 1 ) ) |
28 |
27
|
oveq1d |
|- ( p e. P -> ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) = ( ( p ` 1 ) ^ 2 ) ) |
29 |
5
|
fveq1i |
|- ( .0. ` 2 ) = ( ( I X. { 0 } ) ` 2 ) |
30 |
|
2ex |
|- 2 e. _V |
31 |
30
|
prid2 |
|- 2 e. { 1 , 2 } |
32 |
31 1
|
eleqtrri |
|- 2 e. I |
33 |
|
fvconst2g |
|- ( ( 0 e. _V /\ 2 e. I ) -> ( ( I X. { 0 } ) ` 2 ) = 0 ) |
34 |
15 32 33
|
mp2an |
|- ( ( I X. { 0 } ) ` 2 ) = 0 |
35 |
29 34
|
eqtri |
|- ( .0. ` 2 ) = 0 |
36 |
35
|
a1i |
|- ( p e. P -> ( .0. ` 2 ) = 0 ) |
37 |
36
|
oveq2d |
|- ( p e. P -> ( ( p ` 2 ) - ( .0. ` 2 ) ) = ( ( p ` 2 ) - 0 ) ) |
38 |
1 3
|
rrx2pyel |
|- ( p e. P -> ( p ` 2 ) e. RR ) |
39 |
38
|
recnd |
|- ( p e. P -> ( p ` 2 ) e. CC ) |
40 |
39
|
subid1d |
|- ( p e. P -> ( ( p ` 2 ) - 0 ) = ( p ` 2 ) ) |
41 |
37 40
|
eqtrd |
|- ( p e. P -> ( ( p ` 2 ) - ( .0. ` 2 ) ) = ( p ` 2 ) ) |
42 |
41
|
oveq1d |
|- ( p e. P -> ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) = ( ( p ` 2 ) ^ 2 ) ) |
43 |
28 42
|
oveq12d |
|- ( p e. P -> ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) ) |
44 |
43
|
eqeq1d |
|- ( p e. P -> ( ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) ) ) |
45 |
44
|
adantl |
|- ( ( R e. ( 0 [,) +oo ) /\ p e. P ) -> ( ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) <-> ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) ) ) |
46 |
45
|
rabbidva |
|- ( R e. ( 0 [,) +oo ) -> { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } = { p e. P | ( ( ( p ` 1 ) ^ 2 ) + ( ( p ` 2 ) ^ 2 ) ) = ( R ^ 2 ) } ) |
47 |
46 6
|
eqtr4di |
|- ( R e. ( 0 [,) +oo ) -> { p e. P | ( ( ( ( p ` 1 ) - ( .0. ` 1 ) ) ^ 2 ) + ( ( ( p ` 2 ) - ( .0. ` 2 ) ) ^ 2 ) ) = ( R ^ 2 ) } = C ) |
48 |
13 47
|
eqtrd |
|- ( R e. ( 0 [,) +oo ) -> ( .0. S R ) = C ) |