Metamath Proof Explorer


Theorem 2sphere0

Description: The sphere around the origin .0. (see rrx0 ) with radius R in a two dimensional Euclidean space is a circle. (Contributed by AV, 5-Feb-2023)

Ref Expression
Hypotheses 2sphere.i 𝐼 = { 1 , 2 }
2sphere.e 𝐸 = ( ℝ^ ‘ 𝐼 )
2sphere.p 𝑃 = ( ℝ ↑m 𝐼 )
2sphere.s 𝑆 = ( Sphere ‘ 𝐸 )
2sphere0.0 0 = ( 𝐼 × { 0 } )
2sphere0.c 𝐶 = { 𝑝𝑃 ∣ ( ( ( 𝑝 ‘ 1 ) ↑ 2 ) + ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) }
Assertion 2sphere0 ( 𝑅 ∈ ( 0 [,) +∞ ) → ( 0 𝑆 𝑅 ) = 𝐶 )

Proof

Step Hyp Ref Expression
1 2sphere.i 𝐼 = { 1 , 2 }
2 2sphere.e 𝐸 = ( ℝ^ ‘ 𝐼 )
3 2sphere.p 𝑃 = ( ℝ ↑m 𝐼 )
4 2sphere.s 𝑆 = ( Sphere ‘ 𝐸 )
5 2sphere0.0 0 = ( 𝐼 × { 0 } )
6 2sphere0.c 𝐶 = { 𝑝𝑃 ∣ ( ( ( 𝑝 ‘ 1 ) ↑ 2 ) + ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) }
7 prex { 1 , 2 } ∈ V
8 1 7 eqeltri 𝐼 ∈ V
9 5 3 rrx0el ( 𝐼 ∈ V → 0𝑃 )
10 8 9 ax-mp 0𝑃
11 eqid { 𝑝𝑃 ∣ ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } = { 𝑝𝑃 ∣ ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) }
12 1 2 3 4 11 2sphere ( ( 0𝑃𝑅 ∈ ( 0 [,) +∞ ) ) → ( 0 𝑆 𝑅 ) = { 𝑝𝑃 ∣ ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } )
13 10 12 mpan ( 𝑅 ∈ ( 0 [,) +∞ ) → ( 0 𝑆 𝑅 ) = { 𝑝𝑃 ∣ ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } )
14 5 fveq1i ( 0 ‘ 1 ) = ( ( 𝐼 × { 0 } ) ‘ 1 )
15 c0ex 0 ∈ V
16 1ex 1 ∈ V
17 16 prid1 1 ∈ { 1 , 2 }
18 17 1 eleqtrri 1 ∈ 𝐼
19 fvconst2g ( ( 0 ∈ V ∧ 1 ∈ 𝐼 ) → ( ( 𝐼 × { 0 } ) ‘ 1 ) = 0 )
20 15 18 19 mp2an ( ( 𝐼 × { 0 } ) ‘ 1 ) = 0
21 14 20 eqtri ( 0 ‘ 1 ) = 0
22 21 a1i ( 𝑝𝑃 → ( 0 ‘ 1 ) = 0 )
23 22 oveq2d ( 𝑝𝑃 → ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) = ( ( 𝑝 ‘ 1 ) − 0 ) )
24 1 3 rrx2pxel ( 𝑝𝑃 → ( 𝑝 ‘ 1 ) ∈ ℝ )
25 24 recnd ( 𝑝𝑃 → ( 𝑝 ‘ 1 ) ∈ ℂ )
26 25 subid1d ( 𝑝𝑃 → ( ( 𝑝 ‘ 1 ) − 0 ) = ( 𝑝 ‘ 1 ) )
27 23 26 eqtrd ( 𝑝𝑃 → ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) = ( 𝑝 ‘ 1 ) )
28 27 oveq1d ( 𝑝𝑃 → ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) = ( ( 𝑝 ‘ 1 ) ↑ 2 ) )
29 5 fveq1i ( 0 ‘ 2 ) = ( ( 𝐼 × { 0 } ) ‘ 2 )
30 2ex 2 ∈ V
31 30 prid2 2 ∈ { 1 , 2 }
32 31 1 eleqtrri 2 ∈ 𝐼
33 fvconst2g ( ( 0 ∈ V ∧ 2 ∈ 𝐼 ) → ( ( 𝐼 × { 0 } ) ‘ 2 ) = 0 )
34 15 32 33 mp2an ( ( 𝐼 × { 0 } ) ‘ 2 ) = 0
35 29 34 eqtri ( 0 ‘ 2 ) = 0
36 35 a1i ( 𝑝𝑃 → ( 0 ‘ 2 ) = 0 )
37 36 oveq2d ( 𝑝𝑃 → ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) = ( ( 𝑝 ‘ 2 ) − 0 ) )
38 1 3 rrx2pyel ( 𝑝𝑃 → ( 𝑝 ‘ 2 ) ∈ ℝ )
39 38 recnd ( 𝑝𝑃 → ( 𝑝 ‘ 2 ) ∈ ℂ )
40 39 subid1d ( 𝑝𝑃 → ( ( 𝑝 ‘ 2 ) − 0 ) = ( 𝑝 ‘ 2 ) )
41 37 40 eqtrd ( 𝑝𝑃 → ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) = ( 𝑝 ‘ 2 ) )
42 41 oveq1d ( 𝑝𝑃 → ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) = ( ( 𝑝 ‘ 2 ) ↑ 2 ) )
43 28 42 oveq12d ( 𝑝𝑃 → ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( ( ( 𝑝 ‘ 1 ) ↑ 2 ) + ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) )
44 43 eqeq1d ( 𝑝𝑃 → ( ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ↔ ( ( ( 𝑝 ‘ 1 ) ↑ 2 ) + ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ) )
45 44 adantl ( ( 𝑅 ∈ ( 0 [,) +∞ ) ∧ 𝑝𝑃 ) → ( ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ↔ ( ( ( 𝑝 ‘ 1 ) ↑ 2 ) + ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) ) )
46 45 rabbidva ( 𝑅 ∈ ( 0 [,) +∞ ) → { 𝑝𝑃 ∣ ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } = { 𝑝𝑃 ∣ ( ( ( 𝑝 ‘ 1 ) ↑ 2 ) + ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } )
47 46 6 eqtr4di ( 𝑅 ∈ ( 0 [,) +∞ ) → { 𝑝𝑃 ∣ ( ( ( ( 𝑝 ‘ 1 ) − ( 0 ‘ 1 ) ) ↑ 2 ) + ( ( ( 𝑝 ‘ 2 ) − ( 0 ‘ 2 ) ) ↑ 2 ) ) = ( 𝑅 ↑ 2 ) } = 𝐶 )
48 13 47 eqtrd ( 𝑅 ∈ ( 0 [,) +∞ ) → ( 0 𝑆 𝑅 ) = 𝐶 )