| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sphere.i | ⊢ 𝐼  =  { 1 ,  2 } | 
						
							| 2 |  | 2sphere.e | ⊢ 𝐸  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 3 |  | 2sphere.p | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 4 |  | 2sphere.s | ⊢ 𝑆  =  ( Sphere ‘ 𝐸 ) | 
						
							| 5 |  | 2sphere0.0 | ⊢  0   =  ( 𝐼  ×  { 0 } ) | 
						
							| 6 |  | 2sphere0.c | ⊢ 𝐶  =  { 𝑝  ∈  𝑃  ∣  ( ( ( 𝑝 ‘ 1 ) ↑ 2 )  +  ( ( 𝑝 ‘ 2 ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) } | 
						
							| 7 |  | prex | ⊢ { 1 ,  2 }  ∈  V | 
						
							| 8 | 1 7 | eqeltri | ⊢ 𝐼  ∈  V | 
						
							| 9 | 5 3 | rrx0el | ⊢ ( 𝐼  ∈  V  →   0   ∈  𝑃 ) | 
						
							| 10 | 8 9 | ax-mp | ⊢  0   ∈  𝑃 | 
						
							| 11 |  | eqid | ⊢ { 𝑝  ∈  𝑃  ∣  ( ( ( ( 𝑝 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) }  =  { 𝑝  ∈  𝑃  ∣  ( ( ( ( 𝑝 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) } | 
						
							| 12 | 1 2 3 4 11 | 2sphere | ⊢ ( (  0   ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  (  0  𝑆 𝑅 )  =  { 𝑝  ∈  𝑃  ∣  ( ( ( ( 𝑝 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) } ) | 
						
							| 13 | 10 12 | mpan | ⊢ ( 𝑅  ∈  ( 0 [,) +∞ )  →  (  0  𝑆 𝑅 )  =  { 𝑝  ∈  𝑃  ∣  ( ( ( ( 𝑝 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) } ) | 
						
							| 14 | 5 | fveq1i | ⊢ (  0  ‘ 1 )  =  ( ( 𝐼  ×  { 0 } ) ‘ 1 ) | 
						
							| 15 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 16 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 17 | 16 | prid1 | ⊢ 1  ∈  { 1 ,  2 } | 
						
							| 18 | 17 1 | eleqtrri | ⊢ 1  ∈  𝐼 | 
						
							| 19 |  | fvconst2g | ⊢ ( ( 0  ∈  V  ∧  1  ∈  𝐼 )  →  ( ( 𝐼  ×  { 0 } ) ‘ 1 )  =  0 ) | 
						
							| 20 | 15 18 19 | mp2an | ⊢ ( ( 𝐼  ×  { 0 } ) ‘ 1 )  =  0 | 
						
							| 21 | 14 20 | eqtri | ⊢ (  0  ‘ 1 )  =  0 | 
						
							| 22 | 21 | a1i | ⊢ ( 𝑝  ∈  𝑃  →  (  0  ‘ 1 )  =  0 ) | 
						
							| 23 | 22 | oveq2d | ⊢ ( 𝑝  ∈  𝑃  →  ( ( 𝑝 ‘ 1 )  −  (  0  ‘ 1 ) )  =  ( ( 𝑝 ‘ 1 )  −  0 ) ) | 
						
							| 24 | 1 3 | rrx2pxel | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 1 )  ∈  ℝ ) | 
						
							| 25 | 24 | recnd | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 1 )  ∈  ℂ ) | 
						
							| 26 | 25 | subid1d | ⊢ ( 𝑝  ∈  𝑃  →  ( ( 𝑝 ‘ 1 )  −  0 )  =  ( 𝑝 ‘ 1 ) ) | 
						
							| 27 | 23 26 | eqtrd | ⊢ ( 𝑝  ∈  𝑃  →  ( ( 𝑝 ‘ 1 )  −  (  0  ‘ 1 ) )  =  ( 𝑝 ‘ 1 ) ) | 
						
							| 28 | 27 | oveq1d | ⊢ ( 𝑝  ∈  𝑃  →  ( ( ( 𝑝 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  =  ( ( 𝑝 ‘ 1 ) ↑ 2 ) ) | 
						
							| 29 | 5 | fveq1i | ⊢ (  0  ‘ 2 )  =  ( ( 𝐼  ×  { 0 } ) ‘ 2 ) | 
						
							| 30 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 31 | 30 | prid2 | ⊢ 2  ∈  { 1 ,  2 } | 
						
							| 32 | 31 1 | eleqtrri | ⊢ 2  ∈  𝐼 | 
						
							| 33 |  | fvconst2g | ⊢ ( ( 0  ∈  V  ∧  2  ∈  𝐼 )  →  ( ( 𝐼  ×  { 0 } ) ‘ 2 )  =  0 ) | 
						
							| 34 | 15 32 33 | mp2an | ⊢ ( ( 𝐼  ×  { 0 } ) ‘ 2 )  =  0 | 
						
							| 35 | 29 34 | eqtri | ⊢ (  0  ‘ 2 )  =  0 | 
						
							| 36 | 35 | a1i | ⊢ ( 𝑝  ∈  𝑃  →  (  0  ‘ 2 )  =  0 ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( 𝑝  ∈  𝑃  →  ( ( 𝑝 ‘ 2 )  −  (  0  ‘ 2 ) )  =  ( ( 𝑝 ‘ 2 )  −  0 ) ) | 
						
							| 38 | 1 3 | rrx2pyel | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 2 )  ∈  ℝ ) | 
						
							| 39 | 38 | recnd | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 2 )  ∈  ℂ ) | 
						
							| 40 | 39 | subid1d | ⊢ ( 𝑝  ∈  𝑃  →  ( ( 𝑝 ‘ 2 )  −  0 )  =  ( 𝑝 ‘ 2 ) ) | 
						
							| 41 | 37 40 | eqtrd | ⊢ ( 𝑝  ∈  𝑃  →  ( ( 𝑝 ‘ 2 )  −  (  0  ‘ 2 ) )  =  ( 𝑝 ‘ 2 ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( 𝑝  ∈  𝑃  →  ( ( ( 𝑝 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 )  =  ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) | 
						
							| 43 | 28 42 | oveq12d | ⊢ ( 𝑝  ∈  𝑃  →  ( ( ( ( 𝑝 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) )  =  ( ( ( 𝑝 ‘ 1 ) ↑ 2 )  +  ( ( 𝑝 ‘ 2 ) ↑ 2 ) ) ) | 
						
							| 44 | 43 | eqeq1d | ⊢ ( 𝑝  ∈  𝑃  →  ( ( ( ( ( 𝑝 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 )  ↔  ( ( ( 𝑝 ‘ 1 ) ↑ 2 )  +  ( ( 𝑝 ‘ 2 ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 45 | 44 | adantl | ⊢ ( ( 𝑅  ∈  ( 0 [,) +∞ )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( ( 𝑝 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 )  ↔  ( ( ( 𝑝 ‘ 1 ) ↑ 2 )  +  ( ( 𝑝 ‘ 2 ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 46 | 45 | rabbidva | ⊢ ( 𝑅  ∈  ( 0 [,) +∞ )  →  { 𝑝  ∈  𝑃  ∣  ( ( ( ( 𝑝 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) }  =  { 𝑝  ∈  𝑃  ∣  ( ( ( 𝑝 ‘ 1 ) ↑ 2 )  +  ( ( 𝑝 ‘ 2 ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) } ) | 
						
							| 47 | 46 6 | eqtr4di | ⊢ ( 𝑅  ∈  ( 0 [,) +∞ )  →  { 𝑝  ∈  𝑃  ∣  ( ( ( ( 𝑝 ‘ 1 )  −  (  0  ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  (  0  ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) }  =  𝐶 ) | 
						
							| 48 | 13 47 | eqtrd | ⊢ ( 𝑅  ∈  ( 0 [,) +∞ )  →  (  0  𝑆 𝑅 )  =  𝐶 ) |