| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2sphere.i | ⊢ 𝐼  =  { 1 ,  2 } | 
						
							| 2 |  | 2sphere.e | ⊢ 𝐸  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 3 |  | 2sphere.p | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 4 |  | 2sphere.s | ⊢ 𝑆  =  ( Sphere ‘ 𝐸 ) | 
						
							| 5 |  | 2sphere.c | ⊢ 𝐶  =  { 𝑝  ∈  𝑃  ∣  ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) } | 
						
							| 6 |  | prfi | ⊢ { 1 ,  2 }  ∈  Fin | 
						
							| 7 | 1 6 | eqeltri | ⊢ 𝐼  ∈  Fin | 
						
							| 8 |  | simpl | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  𝑀  ∈  𝑃 ) | 
						
							| 9 |  | elrege0 | ⊢ ( 𝑅  ∈  ( 0 [,) +∞ )  ↔  ( 𝑅  ∈  ℝ  ∧  0  ≤  𝑅 ) ) | 
						
							| 10 | 9 | simplbi | ⊢ ( 𝑅  ∈  ( 0 [,) +∞ )  →  𝑅  ∈  ℝ ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  𝑅  ∈  ℝ ) | 
						
							| 12 |  | eqid | ⊢ ( dist ‘ 𝐸 )  =  ( dist ‘ 𝐸 ) | 
						
							| 13 | 2 3 12 4 | rrxsphere | ⊢ ( ( 𝐼  ∈  Fin  ∧  𝑀  ∈  𝑃  ∧  𝑅  ∈  ℝ )  →  ( 𝑀 𝑆 𝑅 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ( dist ‘ 𝐸 ) 𝑀 )  =  𝑅 } ) | 
						
							| 14 | 7 8 11 13 | mp3an2i | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝑀 𝑆 𝑅 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ( dist ‘ 𝐸 ) 𝑀 )  =  𝑅 } ) | 
						
							| 15 | 9 | biimpi | ⊢ ( 𝑅  ∈  ( 0 [,) +∞ )  →  ( 𝑅  ∈  ℝ  ∧  0  ≤  𝑅 ) ) | 
						
							| 16 | 15 | ad2antlr | ⊢ ( ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑅  ∈  ℝ  ∧  0  ≤  𝑅 ) ) | 
						
							| 17 |  | sqrtsq | ⊢ ( ( 𝑅  ∈  ℝ  ∧  0  ≤  𝑅 )  →  ( √ ‘ ( 𝑅 ↑ 2 ) )  =  𝑅 ) | 
						
							| 18 | 16 17 | syl | ⊢ ( ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  ∧  𝑝  ∈  𝑃 )  →  ( √ ‘ ( 𝑅 ↑ 2 ) )  =  𝑅 ) | 
						
							| 19 | 18 | eqeq2d | ⊢ ( ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( √ ‘ ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) )  =  ( √ ‘ ( 𝑅 ↑ 2 ) )  ↔  ( √ ‘ ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) )  =  𝑅 ) ) | 
						
							| 20 | 1 3 | rrx2pxel | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 1 )  ∈  ℝ ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  ( 𝑝 ‘ 1 )  ∈  ℝ ) | 
						
							| 22 | 1 3 | rrx2pxel | ⊢ ( 𝑀  ∈  𝑃  →  ( 𝑀 ‘ 1 )  ∈  ℝ ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  ( 𝑀 ‘ 1 )  ∈  ℝ ) | 
						
							| 24 | 21 23 | resubcld | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) )  ∈  ℝ ) | 
						
							| 25 | 24 | resqcld | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 26 | 1 3 | rrx2pyel | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 2 )  ∈  ℝ ) | 
						
							| 27 | 26 | adantl | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  ( 𝑝 ‘ 2 )  ∈  ℝ ) | 
						
							| 28 | 1 3 | rrx2pyel | ⊢ ( 𝑀  ∈  𝑃  →  ( 𝑀 ‘ 2 )  ∈  ℝ ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  ( 𝑀 ‘ 2 )  ∈  ℝ ) | 
						
							| 30 | 27 29 | resubcld | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) )  ∈  ℝ ) | 
						
							| 31 | 30 | resqcld | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 )  ∈  ℝ ) | 
						
							| 32 | 25 31 | readdcld | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) )  ∈  ℝ ) | 
						
							| 33 | 24 | sqge0d | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  0  ≤  ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 ) ) | 
						
							| 34 | 30 | sqge0d | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  0  ≤  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) | 
						
							| 35 | 25 31 33 34 | addge0d | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  0  ≤  ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) ) | 
						
							| 36 | 32 35 | jca | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) )  ∈  ℝ  ∧  0  ≤  ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) ) ) | 
						
							| 37 | 36 | adantlr | ⊢ ( ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) )  ∈  ℝ  ∧  0  ≤  ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) ) ) | 
						
							| 38 |  | resqcl | ⊢ ( 𝑅  ∈  ℝ  →  ( 𝑅 ↑ 2 )  ∈  ℝ ) | 
						
							| 39 |  | sqge0 | ⊢ ( 𝑅  ∈  ℝ  →  0  ≤  ( 𝑅 ↑ 2 ) ) | 
						
							| 40 | 38 39 | jca | ⊢ ( 𝑅  ∈  ℝ  →  ( ( 𝑅 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 41 | 10 40 | syl | ⊢ ( 𝑅  ∈  ( 0 [,) +∞ )  →  ( ( 𝑅 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 42 | 41 | ad2antlr | ⊢ ( ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑅 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 43 |  | sqrt11 | ⊢ ( ( ( ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) )  ∈  ℝ  ∧  0  ≤  ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) )  ∧  ( ( 𝑅 ↑ 2 )  ∈  ℝ  ∧  0  ≤  ( 𝑅 ↑ 2 ) ) )  →  ( ( √ ‘ ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) )  =  ( √ ‘ ( 𝑅 ↑ 2 ) )  ↔  ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 44 | 37 42 43 | syl2anc | ⊢ ( ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( √ ‘ ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) )  =  ( √ ‘ ( 𝑅 ↑ 2 ) )  ↔  ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) ) ) | 
						
							| 45 | 8 | anim1ci | ⊢ ( ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑝  ∈  𝑃  ∧  𝑀  ∈  𝑃 ) ) | 
						
							| 46 |  | 2nn0 | ⊢ 2  ∈  ℕ0 | 
						
							| 47 |  | eqid | ⊢ ( 𝔼hil ‘ 2 )  =  ( 𝔼hil ‘ 2 ) | 
						
							| 48 | 47 | ehlval | ⊢ ( 2  ∈  ℕ0  →  ( 𝔼hil ‘ 2 )  =  ( ℝ^ ‘ ( 1 ... 2 ) ) ) | 
						
							| 49 | 46 48 | ax-mp | ⊢ ( 𝔼hil ‘ 2 )  =  ( ℝ^ ‘ ( 1 ... 2 ) ) | 
						
							| 50 |  | fz12pr | ⊢ ( 1 ... 2 )  =  { 1 ,  2 } | 
						
							| 51 | 50 1 | eqtr4i | ⊢ ( 1 ... 2 )  =  𝐼 | 
						
							| 52 | 51 | fveq2i | ⊢ ( ℝ^ ‘ ( 1 ... 2 ) )  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 53 | 49 52 | eqtri | ⊢ ( 𝔼hil ‘ 2 )  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 54 | 2 53 | eqtr4i | ⊢ 𝐸  =  ( 𝔼hil ‘ 2 ) | 
						
							| 55 | 1 | oveq2i | ⊢ ( ℝ  ↑m  𝐼 )  =  ( ℝ  ↑m  { 1 ,  2 } ) | 
						
							| 56 | 3 55 | eqtri | ⊢ 𝑃  =  ( ℝ  ↑m  { 1 ,  2 } ) | 
						
							| 57 | 54 56 12 | ehl2eudisval | ⊢ ( ( 𝑝  ∈  𝑃  ∧  𝑀  ∈  𝑃 )  →  ( 𝑝 ( dist ‘ 𝐸 ) 𝑀 )  =  ( √ ‘ ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) ) ) | 
						
							| 58 | 45 57 | syl | ⊢ ( ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑝 ( dist ‘ 𝐸 ) 𝑀 )  =  ( √ ‘ ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) ) ) | 
						
							| 59 | 58 | eqcomd | ⊢ ( ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  ∧  𝑝  ∈  𝑃 )  →  ( √ ‘ ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) )  =  ( 𝑝 ( dist ‘ 𝐸 ) 𝑀 ) ) | 
						
							| 60 | 59 | eqeq1d | ⊢ ( ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( √ ‘ ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) ) )  =  𝑅  ↔  ( 𝑝 ( dist ‘ 𝐸 ) 𝑀 )  =  𝑅 ) ) | 
						
							| 61 | 19 44 60 | 3bitr3d | ⊢ ( ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 )  ↔  ( 𝑝 ( dist ‘ 𝐸 ) 𝑀 )  =  𝑅 ) ) | 
						
							| 62 | 61 | rabbidva | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  { 𝑝  ∈  𝑃  ∣  ( ( ( ( 𝑝 ‘ 1 )  −  ( 𝑀 ‘ 1 ) ) ↑ 2 )  +  ( ( ( 𝑝 ‘ 2 )  −  ( 𝑀 ‘ 2 ) ) ↑ 2 ) )  =  ( 𝑅 ↑ 2 ) }  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ( dist ‘ 𝐸 ) 𝑀 )  =  𝑅 } ) | 
						
							| 63 | 5 62 | eqtr2id | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ( dist ‘ 𝐸 ) 𝑀 )  =  𝑅 }  =  𝐶 ) | 
						
							| 64 | 14 63 | eqtrd | ⊢ ( ( 𝑀  ∈  𝑃  ∧  𝑅  ∈  ( 0 [,) +∞ ) )  →  ( 𝑀 𝑆 𝑅 )  =  𝐶 ) |