| Step | Hyp | Ref | Expression | 
						
							| 1 |  | line2ylem.i | ⊢ 𝐼  =  { 1 ,  2 } | 
						
							| 2 |  | line2ylem.p | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 3 |  | ianor | ⊢ ( ¬  ( ( 𝐴  ≠  0  ∧  𝐵  =  0 )  ∧  𝐶  =  0 )  ↔  ( ¬  ( 𝐴  ≠  0  ∧  𝐵  =  0 )  ∨  ¬  𝐶  =  0 ) ) | 
						
							| 4 |  | df-ne | ⊢ ( 𝐶  ≠  0  ↔  ¬  𝐶  =  0 ) | 
						
							| 5 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 6 | 1 2 | prelrrx2 | ⊢ ( ( 0  ∈  ℝ  ∧  0  ∈  ℝ )  →  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  ∈  𝑃 ) | 
						
							| 7 | 5 5 6 | mp2an | ⊢ { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  ∈  𝑃 | 
						
							| 8 |  | eqneqall | ⊢ ( 𝐶  =  0  →  ( 𝐶  ≠  0  →  ¬  0  =  0 ) ) | 
						
							| 9 | 8 | com12 | ⊢ ( 𝐶  ≠  0  →  ( 𝐶  =  0  →  ¬  0  =  0 ) ) | 
						
							| 10 |  | eqid | ⊢ 0  =  0 | 
						
							| 11 | 10 | pm2.24i | ⊢ ( ¬  0  =  0  →  𝐶  =  0 ) | 
						
							| 12 | 9 11 | impbid1 | ⊢ ( 𝐶  ≠  0  →  ( 𝐶  =  0  ↔  ¬  0  =  0 ) ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐶  ≠  0 )  →  ( 𝐶  =  0  ↔  ¬  0  =  0 ) ) | 
						
							| 14 |  | xor3 | ⊢ ( ¬  ( 𝐶  =  0  ↔  0  =  0 )  ↔  ( 𝐶  =  0  ↔  ¬  0  =  0 ) ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐶  ≠  0 )  →  ¬  ( 𝐶  =  0  ↔  0  =  0 ) ) | 
						
							| 16 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 17 | 16 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐴  ∈  ℂ ) | 
						
							| 18 | 17 | mul01d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  ·  0 )  =  0 ) | 
						
							| 19 |  | simp2 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐵  ∈  ℝ ) | 
						
							| 20 | 19 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐵  ∈  ℂ ) | 
						
							| 21 | 20 | mul01d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐵  ·  0 )  =  0 ) | 
						
							| 22 | 18 21 | oveq12d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐴  ·  0 )  +  ( 𝐵  ·  0 ) )  =  ( 0  +  0 ) ) | 
						
							| 23 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 24 | 22 23 | eqtrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( 𝐴  ·  0 )  +  ( 𝐵  ·  0 ) )  =  0 ) | 
						
							| 25 | 24 | eqeq1d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( ( 𝐴  ·  0 )  +  ( 𝐵  ·  0 ) )  =  𝐶  ↔  0  =  𝐶 ) ) | 
						
							| 26 |  | eqcom | ⊢ ( 0  =  𝐶  ↔  𝐶  =  0 ) | 
						
							| 27 | 25 26 | bitrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( ( 𝐴  ·  0 )  +  ( 𝐵  ·  0 ) )  =  𝐶  ↔  𝐶  =  0 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐶  ≠  0 )  →  ( ( ( 𝐴  ·  0 )  +  ( 𝐵  ·  0 ) )  =  𝐶  ↔  𝐶  =  0 ) ) | 
						
							| 29 | 28 | bibi1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐶  ≠  0 )  →  ( ( ( ( 𝐴  ·  0 )  +  ( 𝐵  ·  0 ) )  =  𝐶  ↔  0  =  0 )  ↔  ( 𝐶  =  0  ↔  0  =  0 ) ) ) | 
						
							| 30 | 15 29 | mtbird | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐶  ≠  0 )  →  ¬  ( ( ( 𝐴  ·  0 )  +  ( 𝐵  ·  0 ) )  =  𝐶  ↔  0  =  0 ) ) | 
						
							| 31 |  | fveq1 | ⊢ ( 𝑝  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  →  ( 𝑝 ‘ 1 )  =  ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ‘ 1 ) ) | 
						
							| 32 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 33 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 34 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 35 |  | fvpr1g | ⊢ ( ( 1  ∈  V  ∧  0  ∈  V  ∧  1  ≠  2 )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ‘ 1 )  =  0 ) | 
						
							| 36 | 32 33 34 35 | mp3an | ⊢ ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ‘ 1 )  =  0 | 
						
							| 37 | 31 36 | eqtrdi | ⊢ ( 𝑝  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  →  ( 𝑝 ‘ 1 )  =  0 ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( 𝑝  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  →  ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  =  ( 𝐴  ·  0 ) ) | 
						
							| 39 |  | fveq1 | ⊢ ( 𝑝  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  →  ( 𝑝 ‘ 2 )  =  ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ‘ 2 ) ) | 
						
							| 40 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 41 |  | fvpr2g | ⊢ ( ( 2  ∈  V  ∧  0  ∈  V  ∧  1  ≠  2 )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ‘ 2 )  =  0 ) | 
						
							| 42 | 40 33 34 41 | mp3an | ⊢ ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 } ‘ 2 )  =  0 | 
						
							| 43 | 39 42 | eqtrdi | ⊢ ( 𝑝  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  →  ( 𝑝 ‘ 2 )  =  0 ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝑝  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  →  ( 𝐵  ·  ( 𝑝 ‘ 2 ) )  =  ( 𝐵  ·  0 ) ) | 
						
							| 45 | 38 44 | oveq12d | ⊢ ( 𝑝  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  →  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  ( ( 𝐴  ·  0 )  +  ( 𝐵  ·  0 ) ) ) | 
						
							| 46 | 45 | eqeq1d | ⊢ ( 𝑝  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  →  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( ( 𝐴  ·  0 )  +  ( 𝐵  ·  0 ) )  =  𝐶 ) ) | 
						
							| 47 | 37 | eqeq1d | ⊢ ( 𝑝  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  →  ( ( 𝑝 ‘ 1 )  =  0  ↔  0  =  0 ) ) | 
						
							| 48 | 46 47 | bibi12d | ⊢ ( 𝑝  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  →  ( ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  ↔  ( ( ( 𝐴  ·  0 )  +  ( 𝐵  ·  0 ) )  =  𝐶  ↔  0  =  0 ) ) ) | 
						
							| 49 | 48 | notbid | ⊢ ( 𝑝  =  { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  →  ( ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  ↔  ¬  ( ( ( 𝐴  ·  0 )  +  ( 𝐵  ·  0 ) )  =  𝐶  ↔  0  =  0 ) ) ) | 
						
							| 50 | 49 | rspcev | ⊢ ( ( { 〈 1 ,  0 〉 ,  〈 2 ,  0 〉 }  ∈  𝑃  ∧  ¬  ( ( ( 𝐴  ·  0 )  +  ( 𝐵  ·  0 ) )  =  𝐶  ↔  0  =  0 ) )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 51 | 7 30 50 | sylancr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  𝐶  ≠  0 )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 52 | 51 | expcom | ⊢ ( 𝐶  ≠  0  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) | 
						
							| 53 | 4 52 | sylbir | ⊢ ( ¬  𝐶  =  0  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) | 
						
							| 54 |  | notnotb | ⊢ ( 𝐶  =  0  ↔  ¬  ¬  𝐶  =  0 ) | 
						
							| 55 |  | ianor | ⊢ ( ¬  ( 𝐴  ≠  0  ∧  𝐵  =  0 )  ↔  ( ¬  𝐴  ≠  0  ∨  ¬  𝐵  =  0 ) ) | 
						
							| 56 |  | df-ne | ⊢ ( 𝐵  ≠  0  ↔  ¬  𝐵  =  0 ) | 
						
							| 57 |  | 1red | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  1  ∈  ℝ ) | 
						
							| 58 | 16 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  𝐴  ∈  ℝ ) | 
						
							| 59 | 58 | renegcld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  - 𝐴  ∈  ℝ ) | 
						
							| 60 | 19 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  𝐵  ∈  ℝ ) | 
						
							| 61 |  | simprl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  𝐵  ≠  0 ) | 
						
							| 62 | 59 60 61 | redivcld | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  ( - 𝐴  /  𝐵 )  ∈  ℝ ) | 
						
							| 63 | 1 2 | prelrrx2 | ⊢ ( ( 1  ∈  ℝ  ∧  ( - 𝐴  /  𝐵 )  ∈  ℝ )  →  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  ∈  𝑃 ) | 
						
							| 64 | 57 62 63 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  ∈  𝑃 ) | 
						
							| 65 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 66 | 65 | neii | ⊢ ¬  1  =  0 | 
						
							| 67 | 10 66 | 2th | ⊢ ( 0  =  0  ↔  ¬  1  =  0 ) | 
						
							| 68 |  | xor3 | ⊢ ( ¬  ( 0  =  0  ↔  1  =  0 )  ↔  ( 0  =  0  ↔  ¬  1  =  0 ) ) | 
						
							| 69 | 67 68 | mpbir | ⊢ ¬  ( 0  =  0  ↔  1  =  0 ) | 
						
							| 70 | 17 | mulridd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  ·  1 )  =  𝐴 ) | 
						
							| 71 | 70 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  ( 𝐴  ·  1 )  =  𝐴 ) | 
						
							| 72 | 17 | negcld | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  - 𝐴  ∈  ℂ ) | 
						
							| 73 | 72 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  - 𝐴  ∈  ℂ ) | 
						
							| 74 | 20 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  𝐵  ∈  ℂ ) | 
						
							| 75 | 73 74 61 | divcan2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  ( 𝐵  ·  ( - 𝐴  /  𝐵 ) )  =  - 𝐴 ) | 
						
							| 76 | 71 75 | oveq12d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  ( - 𝐴  /  𝐵 ) ) )  =  ( 𝐴  +  - 𝐴 ) ) | 
						
							| 77 | 17 | negidd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( 𝐴  +  - 𝐴 )  =  0 ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  ( 𝐴  +  - 𝐴 )  =  0 ) | 
						
							| 79 | 76 78 | eqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  ( - 𝐴  /  𝐵 ) ) )  =  0 ) | 
						
							| 80 |  | simprr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  𝐶  =  0 ) | 
						
							| 81 | 79 80 | eqeq12d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  ( ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  ( - 𝐴  /  𝐵 ) ) )  =  𝐶  ↔  0  =  0 ) ) | 
						
							| 82 | 81 | bibi1d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  ( ( ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  ( - 𝐴  /  𝐵 ) ) )  =  𝐶  ↔  1  =  0 )  ↔  ( 0  =  0  ↔  1  =  0 ) ) ) | 
						
							| 83 | 69 82 | mtbiri | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  ¬  ( ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  ( - 𝐴  /  𝐵 ) ) )  =  𝐶  ↔  1  =  0 ) ) | 
						
							| 84 |  | fveq1 | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  →  ( 𝑝 ‘ 1 )  =  ( { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 } ‘ 1 ) ) | 
						
							| 85 |  | fvpr1g | ⊢ ( ( 1  ∈  V  ∧  1  ∈  V  ∧  1  ≠  2 )  →  ( { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 } ‘ 1 )  =  1 ) | 
						
							| 86 | 32 32 34 85 | mp3an | ⊢ ( { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 } ‘ 1 )  =  1 | 
						
							| 87 | 84 86 | eqtrdi | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  →  ( 𝑝 ‘ 1 )  =  1 ) | 
						
							| 88 | 87 | oveq2d | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  →  ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  =  ( 𝐴  ·  1 ) ) | 
						
							| 89 |  | fveq1 | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  →  ( 𝑝 ‘ 2 )  =  ( { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 } ‘ 2 ) ) | 
						
							| 90 |  | ovex | ⊢ ( - 𝐴  /  𝐵 )  ∈  V | 
						
							| 91 |  | fvpr2g | ⊢ ( ( 2  ∈  V  ∧  ( - 𝐴  /  𝐵 )  ∈  V  ∧  1  ≠  2 )  →  ( { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 } ‘ 2 )  =  ( - 𝐴  /  𝐵 ) ) | 
						
							| 92 | 40 90 34 91 | mp3an | ⊢ ( { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 } ‘ 2 )  =  ( - 𝐴  /  𝐵 ) | 
						
							| 93 | 89 92 | eqtrdi | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  →  ( 𝑝 ‘ 2 )  =  ( - 𝐴  /  𝐵 ) ) | 
						
							| 94 | 93 | oveq2d | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  →  ( 𝐵  ·  ( 𝑝 ‘ 2 ) )  =  ( 𝐵  ·  ( - 𝐴  /  𝐵 ) ) ) | 
						
							| 95 | 88 94 | oveq12d | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  →  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  ( - 𝐴  /  𝐵 ) ) ) ) | 
						
							| 96 | 95 | eqeq1d | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  →  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  ( - 𝐴  /  𝐵 ) ) )  =  𝐶 ) ) | 
						
							| 97 | 87 | eqeq1d | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  →  ( ( 𝑝 ‘ 1 )  =  0  ↔  1  =  0 ) ) | 
						
							| 98 | 96 97 | bibi12d | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  →  ( ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  ↔  ( ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  ( - 𝐴  /  𝐵 ) ) )  =  𝐶  ↔  1  =  0 ) ) ) | 
						
							| 99 | 98 | notbid | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  →  ( ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  ↔  ¬  ( ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  ( - 𝐴  /  𝐵 ) ) )  =  𝐶  ↔  1  =  0 ) ) ) | 
						
							| 100 | 99 | rspcev | ⊢ ( ( { 〈 1 ,  1 〉 ,  〈 2 ,  ( - 𝐴  /  𝐵 ) 〉 }  ∈  𝑃  ∧  ¬  ( ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  ( - 𝐴  /  𝐵 ) ) )  =  𝐶  ↔  1  =  0 ) )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 101 | 64 83 100 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝐵  ≠  0  ∧  𝐶  =  0 ) )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 102 | 101 | expcom | ⊢ ( ( 𝐵  ≠  0  ∧  𝐶  =  0 )  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) | 
						
							| 103 | 102 | ex | ⊢ ( 𝐵  ≠  0  →  ( 𝐶  =  0  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) ) | 
						
							| 104 | 56 103 | sylbir | ⊢ ( ¬  𝐵  =  0  →  ( 𝐶  =  0  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) ) | 
						
							| 105 |  | notnotb | ⊢ ( 𝐵  =  0  ↔  ¬  ¬  𝐵  =  0 ) | 
						
							| 106 |  | nne | ⊢ ( ¬  𝐴  ≠  0  ↔  𝐴  =  0 ) | 
						
							| 107 | 106 | bicomi | ⊢ ( 𝐴  =  0  ↔  ¬  𝐴  ≠  0 ) | 
						
							| 108 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 109 | 1 2 | prelrrx2 | ⊢ ( ( 1  ∈  ℝ  ∧  1  ∈  ℝ )  →  { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  ∈  𝑃 ) | 
						
							| 110 | 108 108 109 | mp2an | ⊢ { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  ∈  𝑃 | 
						
							| 111 |  | oveq1 | ⊢ ( 𝐴  =  0  →  ( 𝐴  ·  1 )  =  ( 0  ·  1 ) ) | 
						
							| 112 | 111 | adantl | ⊢ ( ( 𝐵  =  0  ∧  𝐴  =  0 )  →  ( 𝐴  ·  1 )  =  ( 0  ·  1 ) ) | 
						
							| 113 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 114 | 113 | mul02i | ⊢ ( 0  ·  1 )  =  0 | 
						
							| 115 | 112 114 | eqtrdi | ⊢ ( ( 𝐵  =  0  ∧  𝐴  =  0 )  →  ( 𝐴  ·  1 )  =  0 ) | 
						
							| 116 |  | oveq1 | ⊢ ( 𝐵  =  0  →  ( 𝐵  ·  1 )  =  ( 0  ·  1 ) ) | 
						
							| 117 | 116 | adantr | ⊢ ( ( 𝐵  =  0  ∧  𝐴  =  0 )  →  ( 𝐵  ·  1 )  =  ( 0  ·  1 ) ) | 
						
							| 118 | 117 114 | eqtrdi | ⊢ ( ( 𝐵  =  0  ∧  𝐴  =  0 )  →  ( 𝐵  ·  1 )  =  0 ) | 
						
							| 119 | 115 118 | oveq12d | ⊢ ( ( 𝐵  =  0  ∧  𝐴  =  0 )  →  ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  1 ) )  =  ( 0  +  0 ) ) | 
						
							| 120 | 119 23 | eqtrdi | ⊢ ( ( 𝐵  =  0  ∧  𝐴  =  0 )  →  ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  1 ) )  =  0 ) | 
						
							| 121 |  | id | ⊢ ( 𝐶  =  0  →  𝐶  =  0 ) | 
						
							| 122 | 120 121 | eqeqan12d | ⊢ ( ( ( 𝐵  =  0  ∧  𝐴  =  0 )  ∧  𝐶  =  0 )  →  ( ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  1 ) )  =  𝐶  ↔  0  =  0 ) ) | 
						
							| 123 | 122 | bibi1d | ⊢ ( ( ( 𝐵  =  0  ∧  𝐴  =  0 )  ∧  𝐶  =  0 )  →  ( ( ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  1 ) )  =  𝐶  ↔  1  =  0 )  ↔  ( 0  =  0  ↔  1  =  0 ) ) ) | 
						
							| 124 | 69 123 | mtbiri | ⊢ ( ( ( 𝐵  =  0  ∧  𝐴  =  0 )  ∧  𝐶  =  0 )  →  ¬  ( ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  1 ) )  =  𝐶  ↔  1  =  0 ) ) | 
						
							| 125 |  | fveq1 | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  →  ( 𝑝 ‘ 1 )  =  ( { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 } ‘ 1 ) ) | 
						
							| 126 |  | fvpr1g | ⊢ ( ( 1  ∈  V  ∧  1  ∈  V  ∧  1  ≠  2 )  →  ( { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 } ‘ 1 )  =  1 ) | 
						
							| 127 | 32 32 34 126 | mp3an | ⊢ ( { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 } ‘ 1 )  =  1 | 
						
							| 128 | 125 127 | eqtrdi | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  →  ( 𝑝 ‘ 1 )  =  1 ) | 
						
							| 129 | 128 | oveq2d | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  →  ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  =  ( 𝐴  ·  1 ) ) | 
						
							| 130 |  | fveq1 | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  →  ( 𝑝 ‘ 2 )  =  ( { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 } ‘ 2 ) ) | 
						
							| 131 |  | fvpr2g | ⊢ ( ( 2  ∈  V  ∧  1  ∈  V  ∧  1  ≠  2 )  →  ( { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 } ‘ 2 )  =  1 ) | 
						
							| 132 | 40 32 34 131 | mp3an | ⊢ ( { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 } ‘ 2 )  =  1 | 
						
							| 133 | 130 132 | eqtrdi | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  →  ( 𝑝 ‘ 2 )  =  1 ) | 
						
							| 134 | 133 | oveq2d | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  →  ( 𝐵  ·  ( 𝑝 ‘ 2 ) )  =  ( 𝐵  ·  1 ) ) | 
						
							| 135 | 129 134 | oveq12d | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  →  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  1 ) ) ) | 
						
							| 136 | 135 | eqeq1d | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  →  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  1 ) )  =  𝐶 ) ) | 
						
							| 137 | 128 | eqeq1d | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  →  ( ( 𝑝 ‘ 1 )  =  0  ↔  1  =  0 ) ) | 
						
							| 138 | 136 137 | bibi12d | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  →  ( ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  ↔  ( ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  1 ) )  =  𝐶  ↔  1  =  0 ) ) ) | 
						
							| 139 | 138 | notbid | ⊢ ( 𝑝  =  { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  →  ( ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  ↔  ¬  ( ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  1 ) )  =  𝐶  ↔  1  =  0 ) ) ) | 
						
							| 140 | 139 | rspcev | ⊢ ( ( { 〈 1 ,  1 〉 ,  〈 2 ,  1 〉 }  ∈  𝑃  ∧  ¬  ( ( ( 𝐴  ·  1 )  +  ( 𝐵  ·  1 ) )  =  𝐶  ↔  1  =  0 ) )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 141 | 110 124 140 | sylancr | ⊢ ( ( ( 𝐵  =  0  ∧  𝐴  =  0 )  ∧  𝐶  =  0 )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 142 | 141 | a1d | ⊢ ( ( ( 𝐵  =  0  ∧  𝐴  =  0 )  ∧  𝐶  =  0 )  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) | 
						
							| 143 | 142 | ex | ⊢ ( ( 𝐵  =  0  ∧  𝐴  =  0 )  →  ( 𝐶  =  0  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) ) | 
						
							| 144 | 105 107 143 | syl2anbr | ⊢ ( ( ¬  ¬  𝐵  =  0  ∧  ¬  𝐴  ≠  0 )  →  ( 𝐶  =  0  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) ) | 
						
							| 145 | 104 144 | jaoi3 | ⊢ ( ( ¬  𝐵  =  0  ∨  ¬  𝐴  ≠  0 )  →  ( 𝐶  =  0  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) ) | 
						
							| 146 | 145 | orcoms | ⊢ ( ( ¬  𝐴  ≠  0  ∨  ¬  𝐵  =  0 )  →  ( 𝐶  =  0  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) ) | 
						
							| 147 | 55 146 | sylbi | ⊢ ( ¬  ( 𝐴  ≠  0  ∧  𝐵  =  0 )  →  ( 𝐶  =  0  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) ) | 
						
							| 148 | 147 | com12 | ⊢ ( 𝐶  =  0  →  ( ¬  ( 𝐴  ≠  0  ∧  𝐵  =  0 )  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) ) | 
						
							| 149 | 54 148 | sylbir | ⊢ ( ¬  ¬  𝐶  =  0  →  ( ¬  ( 𝐴  ≠  0  ∧  𝐵  =  0 )  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) ) | 
						
							| 150 | 149 | imp | ⊢ ( ( ¬  ¬  𝐶  =  0  ∧  ¬  ( 𝐴  ≠  0  ∧  𝐵  =  0 ) )  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) | 
						
							| 151 | 53 150 | jaoi3 | ⊢ ( ( ¬  𝐶  =  0  ∨  ¬  ( 𝐴  ≠  0  ∧  𝐵  =  0 ) )  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) | 
						
							| 152 | 151 | orcoms | ⊢ ( ( ¬  ( 𝐴  ≠  0  ∧  𝐵  =  0 )  ∨  ¬  𝐶  =  0 )  →  ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) | 
						
							| 153 | 152 | com12 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ( ¬  ( 𝐴  ≠  0  ∧  𝐵  =  0 )  ∨  ¬  𝐶  =  0 )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) | 
						
							| 154 | 3 153 | biimtrid | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ¬  ( ( 𝐴  ≠  0  ∧  𝐵  =  0 )  ∧  𝐶  =  0 )  →  ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) | 
						
							| 155 |  | rexnal | ⊢ ( ∃ 𝑝  ∈  𝑃 ¬  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  ↔  ¬  ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 156 | 154 155 | imbitrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ¬  ( ( 𝐴  ≠  0  ∧  𝐵  =  0 )  ∧  𝐶  =  0 )  →  ¬  ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) | 
						
							| 157 | 156 | con4d | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  →  ( ( 𝐴  ≠  0  ∧  𝐵  =  0 )  ∧  𝐶  =  0 ) ) ) | 
						
							| 158 |  | df-3an | ⊢ ( ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 )  ↔  ( ( 𝐴  ≠  0  ∧  𝐵  =  0 )  ∧  𝐶  =  0 ) ) | 
						
							| 159 | 157 158 | imbitrrdi | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  →  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) ) ) |