Step |
Hyp |
Ref |
Expression |
1 |
|
line2ylem.i |
⊢ 𝐼 = { 1 , 2 } |
2 |
|
line2ylem.p |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
3 |
|
ianor |
⊢ ( ¬ ( ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) ∧ 𝐶 = 0 ) ↔ ( ¬ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) ∨ ¬ 𝐶 = 0 ) ) |
4 |
|
df-ne |
⊢ ( 𝐶 ≠ 0 ↔ ¬ 𝐶 = 0 ) |
5 |
|
0re |
⊢ 0 ∈ ℝ |
6 |
1 2
|
prelrrx2 |
⊢ ( ( 0 ∈ ℝ ∧ 0 ∈ ℝ ) → { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∈ 𝑃 ) |
7 |
5 5 6
|
mp2an |
⊢ { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∈ 𝑃 |
8 |
|
eqneqall |
⊢ ( 𝐶 = 0 → ( 𝐶 ≠ 0 → ¬ 0 = 0 ) ) |
9 |
8
|
com12 |
⊢ ( 𝐶 ≠ 0 → ( 𝐶 = 0 → ¬ 0 = 0 ) ) |
10 |
|
eqid |
⊢ 0 = 0 |
11 |
10
|
pm2.24i |
⊢ ( ¬ 0 = 0 → 𝐶 = 0 ) |
12 |
9 11
|
impbid1 |
⊢ ( 𝐶 ≠ 0 → ( 𝐶 = 0 ↔ ¬ 0 = 0 ) ) |
13 |
12
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≠ 0 ) → ( 𝐶 = 0 ↔ ¬ 0 = 0 ) ) |
14 |
|
xor3 |
⊢ ( ¬ ( 𝐶 = 0 ↔ 0 = 0 ) ↔ ( 𝐶 = 0 ↔ ¬ 0 = 0 ) ) |
15 |
13 14
|
sylibr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≠ 0 ) → ¬ ( 𝐶 = 0 ↔ 0 = 0 ) ) |
16 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
17 |
16
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
18 |
17
|
mul01d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 · 0 ) = 0 ) |
19 |
|
simp2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
20 |
19
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
21 |
20
|
mul01d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐵 · 0 ) = 0 ) |
22 |
18 21
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 0 ) + ( 𝐵 · 0 ) ) = ( 0 + 0 ) ) |
23 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
24 |
22 23
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 · 0 ) + ( 𝐵 · 0 ) ) = 0 ) |
25 |
24
|
eqeq1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐴 · 0 ) + ( 𝐵 · 0 ) ) = 𝐶 ↔ 0 = 𝐶 ) ) |
26 |
|
eqcom |
⊢ ( 0 = 𝐶 ↔ 𝐶 = 0 ) |
27 |
25 26
|
bitrdi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ( 𝐴 · 0 ) + ( 𝐵 · 0 ) ) = 𝐶 ↔ 𝐶 = 0 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≠ 0 ) → ( ( ( 𝐴 · 0 ) + ( 𝐵 · 0 ) ) = 𝐶 ↔ 𝐶 = 0 ) ) |
29 |
28
|
bibi1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≠ 0 ) → ( ( ( ( 𝐴 · 0 ) + ( 𝐵 · 0 ) ) = 𝐶 ↔ 0 = 0 ) ↔ ( 𝐶 = 0 ↔ 0 = 0 ) ) ) |
30 |
15 29
|
mtbird |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≠ 0 ) → ¬ ( ( ( 𝐴 · 0 ) + ( 𝐵 · 0 ) ) = 𝐶 ↔ 0 = 0 ) ) |
31 |
|
fveq1 |
⊢ ( 𝑝 = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } → ( 𝑝 ‘ 1 ) = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ‘ 1 ) ) |
32 |
|
1ex |
⊢ 1 ∈ V |
33 |
|
c0ex |
⊢ 0 ∈ V |
34 |
|
1ne2 |
⊢ 1 ≠ 2 |
35 |
|
fvpr1g |
⊢ ( ( 1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2 ) → ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ‘ 1 ) = 0 ) |
36 |
32 33 34 35
|
mp3an |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ‘ 1 ) = 0 |
37 |
31 36
|
eqtrdi |
⊢ ( 𝑝 = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } → ( 𝑝 ‘ 1 ) = 0 ) |
38 |
37
|
oveq2d |
⊢ ( 𝑝 = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = ( 𝐴 · 0 ) ) |
39 |
|
fveq1 |
⊢ ( 𝑝 = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } → ( 𝑝 ‘ 2 ) = ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ‘ 2 ) ) |
40 |
|
2ex |
⊢ 2 ∈ V |
41 |
|
fvpr2g |
⊢ ( ( 2 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2 ) → ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ‘ 2 ) = 0 ) |
42 |
40 33 34 41
|
mp3an |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ‘ 2 ) = 0 |
43 |
39 42
|
eqtrdi |
⊢ ( 𝑝 = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } → ( 𝑝 ‘ 2 ) = 0 ) |
44 |
43
|
oveq2d |
⊢ ( 𝑝 = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } → ( 𝐵 · ( 𝑝 ‘ 2 ) ) = ( 𝐵 · 0 ) ) |
45 |
38 44
|
oveq12d |
⊢ ( 𝑝 = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = ( ( 𝐴 · 0 ) + ( 𝐵 · 0 ) ) ) |
46 |
45
|
eqeq1d |
⊢ ( 𝑝 = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( 𝐴 · 0 ) + ( 𝐵 · 0 ) ) = 𝐶 ) ) |
47 |
37
|
eqeq1d |
⊢ ( 𝑝 = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } → ( ( 𝑝 ‘ 1 ) = 0 ↔ 0 = 0 ) ) |
48 |
46 47
|
bibi12d |
⊢ ( 𝑝 = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } → ( ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ↔ ( ( ( 𝐴 · 0 ) + ( 𝐵 · 0 ) ) = 𝐶 ↔ 0 = 0 ) ) ) |
49 |
48
|
notbid |
⊢ ( 𝑝 = { 〈 1 , 0 〉 , 〈 2 , 0 〉 } → ( ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ↔ ¬ ( ( ( 𝐴 · 0 ) + ( 𝐵 · 0 ) ) = 𝐶 ↔ 0 = 0 ) ) ) |
50 |
49
|
rspcev |
⊢ ( ( { 〈 1 , 0 〉 , 〈 2 , 0 〉 } ∈ 𝑃 ∧ ¬ ( ( ( 𝐴 · 0 ) + ( 𝐵 · 0 ) ) = 𝐶 ↔ 0 = 0 ) ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
51 |
7 30 50
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ 𝐶 ≠ 0 ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
52 |
51
|
expcom |
⊢ ( 𝐶 ≠ 0 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
53 |
4 52
|
sylbir |
⊢ ( ¬ 𝐶 = 0 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
54 |
|
notnotb |
⊢ ( 𝐶 = 0 ↔ ¬ ¬ 𝐶 = 0 ) |
55 |
|
ianor |
⊢ ( ¬ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) ↔ ( ¬ 𝐴 ≠ 0 ∨ ¬ 𝐵 = 0 ) ) |
56 |
|
df-ne |
⊢ ( 𝐵 ≠ 0 ↔ ¬ 𝐵 = 0 ) |
57 |
|
1red |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → 1 ∈ ℝ ) |
58 |
16
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → 𝐴 ∈ ℝ ) |
59 |
58
|
renegcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → - 𝐴 ∈ ℝ ) |
60 |
19
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → 𝐵 ∈ ℝ ) |
61 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → 𝐵 ≠ 0 ) |
62 |
59 60 61
|
redivcld |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → ( - 𝐴 / 𝐵 ) ∈ ℝ ) |
63 |
1 2
|
prelrrx2 |
⊢ ( ( 1 ∈ ℝ ∧ ( - 𝐴 / 𝐵 ) ∈ ℝ ) → { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } ∈ 𝑃 ) |
64 |
57 62 63
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } ∈ 𝑃 ) |
65 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
66 |
65
|
neii |
⊢ ¬ 1 = 0 |
67 |
10 66
|
2th |
⊢ ( 0 = 0 ↔ ¬ 1 = 0 ) |
68 |
|
xor3 |
⊢ ( ¬ ( 0 = 0 ↔ 1 = 0 ) ↔ ( 0 = 0 ↔ ¬ 1 = 0 ) ) |
69 |
67 68
|
mpbir |
⊢ ¬ ( 0 = 0 ↔ 1 = 0 ) |
70 |
17
|
mulid1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 · 1 ) = 𝐴 ) |
71 |
70
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → ( 𝐴 · 1 ) = 𝐴 ) |
72 |
17
|
negcld |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → - 𝐴 ∈ ℂ ) |
73 |
72
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → - 𝐴 ∈ ℂ ) |
74 |
20
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → 𝐵 ∈ ℂ ) |
75 |
73 74 61
|
divcan2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → ( 𝐵 · ( - 𝐴 / 𝐵 ) ) = - 𝐴 ) |
76 |
71 75
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → ( ( 𝐴 · 1 ) + ( 𝐵 · ( - 𝐴 / 𝐵 ) ) ) = ( 𝐴 + - 𝐴 ) ) |
77 |
17
|
negidd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 𝐴 + - 𝐴 ) = 0 ) |
78 |
77
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → ( 𝐴 + - 𝐴 ) = 0 ) |
79 |
76 78
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → ( ( 𝐴 · 1 ) + ( 𝐵 · ( - 𝐴 / 𝐵 ) ) ) = 0 ) |
80 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → 𝐶 = 0 ) |
81 |
79 80
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → ( ( ( 𝐴 · 1 ) + ( 𝐵 · ( - 𝐴 / 𝐵 ) ) ) = 𝐶 ↔ 0 = 0 ) ) |
82 |
81
|
bibi1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → ( ( ( ( 𝐴 · 1 ) + ( 𝐵 · ( - 𝐴 / 𝐵 ) ) ) = 𝐶 ↔ 1 = 0 ) ↔ ( 0 = 0 ↔ 1 = 0 ) ) ) |
83 |
69 82
|
mtbiri |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → ¬ ( ( ( 𝐴 · 1 ) + ( 𝐵 · ( - 𝐴 / 𝐵 ) ) ) = 𝐶 ↔ 1 = 0 ) ) |
84 |
|
fveq1 |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } → ( 𝑝 ‘ 1 ) = ( { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } ‘ 1 ) ) |
85 |
|
fvpr1g |
⊢ ( ( 1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2 ) → ( { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } ‘ 1 ) = 1 ) |
86 |
32 32 34 85
|
mp3an |
⊢ ( { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } ‘ 1 ) = 1 |
87 |
84 86
|
eqtrdi |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } → ( 𝑝 ‘ 1 ) = 1 ) |
88 |
87
|
oveq2d |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = ( 𝐴 · 1 ) ) |
89 |
|
fveq1 |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } → ( 𝑝 ‘ 2 ) = ( { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } ‘ 2 ) ) |
90 |
|
ovex |
⊢ ( - 𝐴 / 𝐵 ) ∈ V |
91 |
|
fvpr2g |
⊢ ( ( 2 ∈ V ∧ ( - 𝐴 / 𝐵 ) ∈ V ∧ 1 ≠ 2 ) → ( { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } ‘ 2 ) = ( - 𝐴 / 𝐵 ) ) |
92 |
40 90 34 91
|
mp3an |
⊢ ( { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } ‘ 2 ) = ( - 𝐴 / 𝐵 ) |
93 |
89 92
|
eqtrdi |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } → ( 𝑝 ‘ 2 ) = ( - 𝐴 / 𝐵 ) ) |
94 |
93
|
oveq2d |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } → ( 𝐵 · ( 𝑝 ‘ 2 ) ) = ( 𝐵 · ( - 𝐴 / 𝐵 ) ) ) |
95 |
88 94
|
oveq12d |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = ( ( 𝐴 · 1 ) + ( 𝐵 · ( - 𝐴 / 𝐵 ) ) ) ) |
96 |
95
|
eqeq1d |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( 𝐴 · 1 ) + ( 𝐵 · ( - 𝐴 / 𝐵 ) ) ) = 𝐶 ) ) |
97 |
87
|
eqeq1d |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } → ( ( 𝑝 ‘ 1 ) = 0 ↔ 1 = 0 ) ) |
98 |
96 97
|
bibi12d |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } → ( ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ↔ ( ( ( 𝐴 · 1 ) + ( 𝐵 · ( - 𝐴 / 𝐵 ) ) ) = 𝐶 ↔ 1 = 0 ) ) ) |
99 |
98
|
notbid |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } → ( ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ↔ ¬ ( ( ( 𝐴 · 1 ) + ( 𝐵 · ( - 𝐴 / 𝐵 ) ) ) = 𝐶 ↔ 1 = 0 ) ) ) |
100 |
99
|
rspcev |
⊢ ( ( { 〈 1 , 1 〉 , 〈 2 , ( - 𝐴 / 𝐵 ) 〉 } ∈ 𝑃 ∧ ¬ ( ( ( 𝐴 · 1 ) + ( 𝐵 · ( - 𝐴 / 𝐵 ) ) ) = 𝐶 ↔ 1 = 0 ) ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
101 |
64 83 100
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
102 |
101
|
expcom |
⊢ ( ( 𝐵 ≠ 0 ∧ 𝐶 = 0 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
103 |
102
|
ex |
⊢ ( 𝐵 ≠ 0 → ( 𝐶 = 0 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) ) |
104 |
56 103
|
sylbir |
⊢ ( ¬ 𝐵 = 0 → ( 𝐶 = 0 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) ) |
105 |
|
notnotb |
⊢ ( 𝐵 = 0 ↔ ¬ ¬ 𝐵 = 0 ) |
106 |
|
nne |
⊢ ( ¬ 𝐴 ≠ 0 ↔ 𝐴 = 0 ) |
107 |
106
|
bicomi |
⊢ ( 𝐴 = 0 ↔ ¬ 𝐴 ≠ 0 ) |
108 |
|
1re |
⊢ 1 ∈ ℝ |
109 |
1 2
|
prelrrx2 |
⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ) → { 〈 1 , 1 〉 , 〈 2 , 1 〉 } ∈ 𝑃 ) |
110 |
108 108 109
|
mp2an |
⊢ { 〈 1 , 1 〉 , 〈 2 , 1 〉 } ∈ 𝑃 |
111 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 · 1 ) = ( 0 · 1 ) ) |
112 |
111
|
adantl |
⊢ ( ( 𝐵 = 0 ∧ 𝐴 = 0 ) → ( 𝐴 · 1 ) = ( 0 · 1 ) ) |
113 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
114 |
113
|
mul02i |
⊢ ( 0 · 1 ) = 0 |
115 |
112 114
|
eqtrdi |
⊢ ( ( 𝐵 = 0 ∧ 𝐴 = 0 ) → ( 𝐴 · 1 ) = 0 ) |
116 |
|
oveq1 |
⊢ ( 𝐵 = 0 → ( 𝐵 · 1 ) = ( 0 · 1 ) ) |
117 |
116
|
adantr |
⊢ ( ( 𝐵 = 0 ∧ 𝐴 = 0 ) → ( 𝐵 · 1 ) = ( 0 · 1 ) ) |
118 |
117 114
|
eqtrdi |
⊢ ( ( 𝐵 = 0 ∧ 𝐴 = 0 ) → ( 𝐵 · 1 ) = 0 ) |
119 |
115 118
|
oveq12d |
⊢ ( ( 𝐵 = 0 ∧ 𝐴 = 0 ) → ( ( 𝐴 · 1 ) + ( 𝐵 · 1 ) ) = ( 0 + 0 ) ) |
120 |
119 23
|
eqtrdi |
⊢ ( ( 𝐵 = 0 ∧ 𝐴 = 0 ) → ( ( 𝐴 · 1 ) + ( 𝐵 · 1 ) ) = 0 ) |
121 |
|
id |
⊢ ( 𝐶 = 0 → 𝐶 = 0 ) |
122 |
120 121
|
eqeqan12d |
⊢ ( ( ( 𝐵 = 0 ∧ 𝐴 = 0 ) ∧ 𝐶 = 0 ) → ( ( ( 𝐴 · 1 ) + ( 𝐵 · 1 ) ) = 𝐶 ↔ 0 = 0 ) ) |
123 |
122
|
bibi1d |
⊢ ( ( ( 𝐵 = 0 ∧ 𝐴 = 0 ) ∧ 𝐶 = 0 ) → ( ( ( ( 𝐴 · 1 ) + ( 𝐵 · 1 ) ) = 𝐶 ↔ 1 = 0 ) ↔ ( 0 = 0 ↔ 1 = 0 ) ) ) |
124 |
69 123
|
mtbiri |
⊢ ( ( ( 𝐵 = 0 ∧ 𝐴 = 0 ) ∧ 𝐶 = 0 ) → ¬ ( ( ( 𝐴 · 1 ) + ( 𝐵 · 1 ) ) = 𝐶 ↔ 1 = 0 ) ) |
125 |
|
fveq1 |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , 1 〉 } → ( 𝑝 ‘ 1 ) = ( { 〈 1 , 1 〉 , 〈 2 , 1 〉 } ‘ 1 ) ) |
126 |
|
fvpr1g |
⊢ ( ( 1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2 ) → ( { 〈 1 , 1 〉 , 〈 2 , 1 〉 } ‘ 1 ) = 1 ) |
127 |
32 32 34 126
|
mp3an |
⊢ ( { 〈 1 , 1 〉 , 〈 2 , 1 〉 } ‘ 1 ) = 1 |
128 |
125 127
|
eqtrdi |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , 1 〉 } → ( 𝑝 ‘ 1 ) = 1 ) |
129 |
128
|
oveq2d |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , 1 〉 } → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = ( 𝐴 · 1 ) ) |
130 |
|
fveq1 |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , 1 〉 } → ( 𝑝 ‘ 2 ) = ( { 〈 1 , 1 〉 , 〈 2 , 1 〉 } ‘ 2 ) ) |
131 |
|
fvpr2g |
⊢ ( ( 2 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2 ) → ( { 〈 1 , 1 〉 , 〈 2 , 1 〉 } ‘ 2 ) = 1 ) |
132 |
40 32 34 131
|
mp3an |
⊢ ( { 〈 1 , 1 〉 , 〈 2 , 1 〉 } ‘ 2 ) = 1 |
133 |
130 132
|
eqtrdi |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , 1 〉 } → ( 𝑝 ‘ 2 ) = 1 ) |
134 |
133
|
oveq2d |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , 1 〉 } → ( 𝐵 · ( 𝑝 ‘ 2 ) ) = ( 𝐵 · 1 ) ) |
135 |
129 134
|
oveq12d |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , 1 〉 } → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = ( ( 𝐴 · 1 ) + ( 𝐵 · 1 ) ) ) |
136 |
135
|
eqeq1d |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , 1 〉 } → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( 𝐴 · 1 ) + ( 𝐵 · 1 ) ) = 𝐶 ) ) |
137 |
128
|
eqeq1d |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , 1 〉 } → ( ( 𝑝 ‘ 1 ) = 0 ↔ 1 = 0 ) ) |
138 |
136 137
|
bibi12d |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , 1 〉 } → ( ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ↔ ( ( ( 𝐴 · 1 ) + ( 𝐵 · 1 ) ) = 𝐶 ↔ 1 = 0 ) ) ) |
139 |
138
|
notbid |
⊢ ( 𝑝 = { 〈 1 , 1 〉 , 〈 2 , 1 〉 } → ( ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ↔ ¬ ( ( ( 𝐴 · 1 ) + ( 𝐵 · 1 ) ) = 𝐶 ↔ 1 = 0 ) ) ) |
140 |
139
|
rspcev |
⊢ ( ( { 〈 1 , 1 〉 , 〈 2 , 1 〉 } ∈ 𝑃 ∧ ¬ ( ( ( 𝐴 · 1 ) + ( 𝐵 · 1 ) ) = 𝐶 ↔ 1 = 0 ) ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
141 |
110 124 140
|
sylancr |
⊢ ( ( ( 𝐵 = 0 ∧ 𝐴 = 0 ) ∧ 𝐶 = 0 ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
142 |
141
|
a1d |
⊢ ( ( ( 𝐵 = 0 ∧ 𝐴 = 0 ) ∧ 𝐶 = 0 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
143 |
142
|
ex |
⊢ ( ( 𝐵 = 0 ∧ 𝐴 = 0 ) → ( 𝐶 = 0 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) ) |
144 |
105 107 143
|
syl2anbr |
⊢ ( ( ¬ ¬ 𝐵 = 0 ∧ ¬ 𝐴 ≠ 0 ) → ( 𝐶 = 0 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) ) |
145 |
104 144
|
jaoi3 |
⊢ ( ( ¬ 𝐵 = 0 ∨ ¬ 𝐴 ≠ 0 ) → ( 𝐶 = 0 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) ) |
146 |
145
|
orcoms |
⊢ ( ( ¬ 𝐴 ≠ 0 ∨ ¬ 𝐵 = 0 ) → ( 𝐶 = 0 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) ) |
147 |
55 146
|
sylbi |
⊢ ( ¬ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) → ( 𝐶 = 0 → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) ) |
148 |
147
|
com12 |
⊢ ( 𝐶 = 0 → ( ¬ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) ) |
149 |
54 148
|
sylbir |
⊢ ( ¬ ¬ 𝐶 = 0 → ( ¬ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) ) |
150 |
149
|
imp |
⊢ ( ( ¬ ¬ 𝐶 = 0 ∧ ¬ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
151 |
53 150
|
jaoi3 |
⊢ ( ( ¬ 𝐶 = 0 ∨ ¬ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
152 |
151
|
orcoms |
⊢ ( ( ¬ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) ∨ ¬ 𝐶 = 0 ) → ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
153 |
152
|
com12 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( ¬ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) ∨ ¬ 𝐶 = 0 ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
154 |
3 153
|
syl5bi |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ¬ ( ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) ∧ 𝐶 = 0 ) → ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
155 |
|
rexnal |
⊢ ( ∃ 𝑝 ∈ 𝑃 ¬ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ↔ ¬ ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
156 |
154 155
|
syl6ib |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ¬ ( ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) ∧ 𝐶 = 0 ) → ¬ ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
157 |
156
|
con4d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) → ( ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) ∧ 𝐶 = 0 ) ) ) |
158 |
|
df-3an |
⊢ ( ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ↔ ( ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ) ∧ 𝐶 = 0 ) ) |
159 |
157 158
|
syl6ibr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) → ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ) |