| Step | Hyp | Ref | Expression | 
						
							| 1 |  | line2.i | ⊢ 𝐼  =  { 1 ,  2 } | 
						
							| 2 |  | line2.e | ⊢ 𝐸  =  ( ℝ^ ‘ 𝐼 ) | 
						
							| 3 |  | line2.p | ⊢ 𝑃  =  ( ℝ  ↑m  𝐼 ) | 
						
							| 4 |  | line2.l | ⊢ 𝐿  =  ( LineM ‘ 𝐸 ) | 
						
							| 5 |  | line2.g | ⊢ 𝐺  =  { 𝑝  ∈  𝑃  ∣  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶 } | 
						
							| 6 |  | line2y.x | ⊢ 𝑋  =  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } | 
						
							| 7 |  | line2y.y | ⊢ 𝑌  =  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } | 
						
							| 8 | 5 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  𝐺  =  { 𝑝  ∈  𝑃  ∣  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶 } ) | 
						
							| 9 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 10 |  | 2ex | ⊢ 2  ∈  V | 
						
							| 11 | 9 10 | pm3.2i | ⊢ ( 1  ∈  V  ∧  2  ∈  V ) | 
						
							| 12 |  | c0ex | ⊢ 0  ∈  V | 
						
							| 13 | 12 | jctl | ⊢ ( 𝑀  ∈  ℝ  →  ( 0  ∈  V  ∧  𝑀  ∈  ℝ ) ) | 
						
							| 14 |  | 1ne2 | ⊢ 1  ≠  2 | 
						
							| 15 | 14 | a1i | ⊢ ( 𝑀  ∈  ℝ  →  1  ≠  2 ) | 
						
							| 16 |  | fprg | ⊢ ( ( ( 1  ∈  V  ∧  2  ∈  V )  ∧  ( 0  ∈  V  ∧  𝑀  ∈  ℝ )  ∧  1  ≠  2 )  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : { 1 ,  2 } ⟶ { 0 ,  𝑀 } ) | 
						
							| 17 |  | 0red | ⊢ ( ( ( 1  ∈  V  ∧  2  ∈  V )  ∧  ( 0  ∈  V  ∧  𝑀  ∈  ℝ )  ∧  1  ≠  2 )  →  0  ∈  ℝ ) | 
						
							| 18 |  | simp2r | ⊢ ( ( ( 1  ∈  V  ∧  2  ∈  V )  ∧  ( 0  ∈  V  ∧  𝑀  ∈  ℝ )  ∧  1  ≠  2 )  →  𝑀  ∈  ℝ ) | 
						
							| 19 | 17 18 | prssd | ⊢ ( ( ( 1  ∈  V  ∧  2  ∈  V )  ∧  ( 0  ∈  V  ∧  𝑀  ∈  ℝ )  ∧  1  ≠  2 )  →  { 0 ,  𝑀 }  ⊆  ℝ ) | 
						
							| 20 | 16 19 | fssd | ⊢ ( ( ( 1  ∈  V  ∧  2  ∈  V )  ∧  ( 0  ∈  V  ∧  𝑀  ∈  ℝ )  ∧  1  ≠  2 )  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 21 | 11 13 15 20 | mp3an2i | ⊢ ( 𝑀  ∈  ℝ  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 22 | 1 | feq2i | ⊢ ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : 𝐼 ⟶ ℝ  ↔  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 23 | 21 22 | sylibr | ⊢ ( 𝑀  ∈  ℝ  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : 𝐼 ⟶ ℝ ) | 
						
							| 24 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 25 |  | prex | ⊢ { 1 ,  2 }  ∈  V | 
						
							| 26 | 1 25 | eqeltri | ⊢ 𝐼  ∈  V | 
						
							| 27 | 24 26 | elmap | ⊢ ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 }  ∈  ( ℝ  ↑m  𝐼 )  ↔  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } : 𝐼 ⟶ ℝ ) | 
						
							| 28 | 23 27 | sylibr | ⊢ ( 𝑀  ∈  ℝ  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 }  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 29 | 28 6 3 | 3eltr4g | ⊢ ( 𝑀  ∈  ℝ  →  𝑋  ∈  𝑃 ) | 
						
							| 30 | 29 | 3ad2ant1 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  𝑋  ∈  𝑃 ) | 
						
							| 31 | 12 | jctl | ⊢ ( 𝑁  ∈  ℝ  →  ( 0  ∈  V  ∧  𝑁  ∈  ℝ ) ) | 
						
							| 32 | 14 | a1i | ⊢ ( 𝑁  ∈  ℝ  →  1  ≠  2 ) | 
						
							| 33 |  | fprg | ⊢ ( ( ( 1  ∈  V  ∧  2  ∈  V )  ∧  ( 0  ∈  V  ∧  𝑁  ∈  ℝ )  ∧  1  ≠  2 )  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } : { 1 ,  2 } ⟶ { 0 ,  𝑁 } ) | 
						
							| 34 | 11 31 32 33 | mp3an2i | ⊢ ( 𝑁  ∈  ℝ  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } : { 1 ,  2 } ⟶ { 0 ,  𝑁 } ) | 
						
							| 35 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 36 |  | prssi | ⊢ ( ( 0  ∈  ℝ  ∧  𝑁  ∈  ℝ )  →  { 0 ,  𝑁 }  ⊆  ℝ ) | 
						
							| 37 | 35 36 | mpan | ⊢ ( 𝑁  ∈  ℝ  →  { 0 ,  𝑁 }  ⊆  ℝ ) | 
						
							| 38 | 34 37 | fssd | ⊢ ( 𝑁  ∈  ℝ  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 39 | 1 | feq2i | ⊢ ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } : 𝐼 ⟶ ℝ  ↔  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } : { 1 ,  2 } ⟶ ℝ ) | 
						
							| 40 | 38 39 | sylibr | ⊢ ( 𝑁  ∈  ℝ  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } : 𝐼 ⟶ ℝ ) | 
						
							| 41 | 24 26 | pm3.2i | ⊢ ( ℝ  ∈  V  ∧  𝐼  ∈  V ) | 
						
							| 42 |  | elmapg | ⊢ ( ( ℝ  ∈  V  ∧  𝐼  ∈  V )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 }  ∈  ( ℝ  ↑m  𝐼 )  ↔  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } : 𝐼 ⟶ ℝ ) ) | 
						
							| 43 | 41 42 | mp1i | ⊢ ( 𝑁  ∈  ℝ  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 }  ∈  ( ℝ  ↑m  𝐼 )  ↔  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } : 𝐼 ⟶ ℝ ) ) | 
						
							| 44 | 40 43 | mpbird | ⊢ ( 𝑁  ∈  ℝ  →  { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 }  ∈  ( ℝ  ↑m  𝐼 ) ) | 
						
							| 45 | 44 7 3 | 3eltr4g | ⊢ ( 𝑁  ∈  ℝ  →  𝑌  ∈  𝑃 ) | 
						
							| 46 | 45 | 3ad2ant2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  𝑌  ∈  𝑃 ) | 
						
							| 47 | 6 | fveq1i | ⊢ ( 𝑋 ‘ 1 )  =  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 1 ) | 
						
							| 48 | 9 12 14 | 3pm3.2i | ⊢ ( 1  ∈  V  ∧  0  ∈  V  ∧  1  ≠  2 ) | 
						
							| 49 |  | fvpr1g | ⊢ ( ( 1  ∈  V  ∧  0  ∈  V  ∧  1  ≠  2 )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 1 )  =  0 ) | 
						
							| 50 | 48 49 | mp1i | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 1 )  =  0 ) | 
						
							| 51 | 47 50 | eqtrid | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  ( 𝑋 ‘ 1 )  =  0 ) | 
						
							| 52 | 7 | fveq1i | ⊢ ( 𝑌 ‘ 1 )  =  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } ‘ 1 ) | 
						
							| 53 |  | fvpr1g | ⊢ ( ( 1  ∈  V  ∧  0  ∈  V  ∧  1  ≠  2 )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } ‘ 1 )  =  0 ) | 
						
							| 54 | 48 53 | mp1i | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } ‘ 1 )  =  0 ) | 
						
							| 55 | 52 54 | eqtrid | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  ( 𝑌 ‘ 1 )  =  0 ) | 
						
							| 56 | 51 55 | eqtr4d | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 ) ) | 
						
							| 57 |  | simp3 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  𝑀  ≠  𝑁 ) | 
						
							| 58 | 6 | fveq1i | ⊢ ( 𝑋 ‘ 2 )  =  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 2 ) | 
						
							| 59 |  | simp1 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  𝑀  ∈  ℝ ) | 
						
							| 60 | 14 | a1i | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  1  ≠  2 ) | 
						
							| 61 |  | fvpr2g | ⊢ ( ( 2  ∈  V  ∧  𝑀  ∈  ℝ  ∧  1  ≠  2 )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 2 )  =  𝑀 ) | 
						
							| 62 | 10 59 60 61 | mp3an2i | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 2 )  =  𝑀 ) | 
						
							| 63 | 58 62 | eqtrid | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  ( 𝑋 ‘ 2 )  =  𝑀 ) | 
						
							| 64 | 7 | fveq1i | ⊢ ( 𝑌 ‘ 2 )  =  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } ‘ 2 ) | 
						
							| 65 |  | simp2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  𝑁  ∈  ℝ ) | 
						
							| 66 |  | fvpr2g | ⊢ ( ( 2  ∈  V  ∧  𝑁  ∈  ℝ  ∧  1  ≠  2 )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } ‘ 2 )  =  𝑁 ) | 
						
							| 67 | 10 65 60 66 | mp3an2i | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑁 〉 } ‘ 2 )  =  𝑁 ) | 
						
							| 68 | 64 67 | eqtrid | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  ( 𝑌 ‘ 2 )  =  𝑁 ) | 
						
							| 69 | 57 63 68 | 3netr4d | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) | 
						
							| 70 | 56 69 | jca | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) | 
						
							| 71 | 30 46 70 | 3jca | ⊢ ( ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 )  →  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) ) ) | 
						
							| 73 | 1 2 3 4 | rrx2vlinest | ⊢ ( ( 𝑋  ∈  𝑃  ∧  𝑌  ∈  𝑃  ∧  ( ( 𝑋 ‘ 1 )  =  ( 𝑌 ‘ 1 )  ∧  ( 𝑋 ‘ 2 )  ≠  ( 𝑌 ‘ 2 ) ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) } ) | 
						
							| 74 | 72 73 | syl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  ( 𝑋 𝐿 𝑌 )  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) } ) | 
						
							| 75 | 8 74 | eqeq12d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  ( 𝐺  =  ( 𝑋 𝐿 𝑌 )  ↔  { 𝑝  ∈  𝑃  ∣  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶 }  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) } ) ) | 
						
							| 76 | 48 49 | ax-mp | ⊢ ( { 〈 1 ,  0 〉 ,  〈 2 ,  𝑀 〉 } ‘ 1 )  =  0 | 
						
							| 77 | 47 76 | eqtri | ⊢ ( 𝑋 ‘ 1 )  =  0 | 
						
							| 78 | 77 | a1i | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  ( 𝑋 ‘ 1 )  =  0 ) | 
						
							| 79 | 78 | eqeq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  ( ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 )  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 80 | 79 | rabbidv | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) }  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  0 } ) | 
						
							| 81 | 80 | eqeq2d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  ( { 𝑝  ∈  𝑃  ∣  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶 }  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  ( 𝑋 ‘ 1 ) }  ↔  { 𝑝  ∈  𝑃  ∣  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶 }  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  0 } ) ) | 
						
							| 82 |  | rabbi | ⊢ ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  ↔  { 𝑝  ∈  𝑃  ∣  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶 }  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  0 } ) | 
						
							| 83 | 1 3 | line2ylem | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  →  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) ) ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  →  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) ) ) | 
						
							| 85 |  | oveq1 | ⊢ ( 𝐵  =  0  →  ( 𝐵  ·  ( 𝑝 ‘ 2 ) )  =  ( 0  ·  ( 𝑝 ‘ 2 ) ) ) | 
						
							| 86 | 85 | 3ad2ant2 | ⊢ ( ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 )  →  ( 𝐵  ·  ( 𝑝 ‘ 2 ) )  =  ( 0  ·  ( 𝑝 ‘ 2 ) ) ) | 
						
							| 87 | 86 | oveq2d | ⊢ ( ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 )  →  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 0  ·  ( 𝑝 ‘ 2 ) ) ) ) | 
						
							| 88 |  | simp3 | ⊢ ( ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 )  →  𝐶  =  0 ) | 
						
							| 89 | 87 88 | eqeq12d | ⊢ ( ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 )  →  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 0  ·  ( 𝑝 ‘ 2 ) ) )  =  0 ) ) | 
						
							| 90 | 89 | ad2antlr | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 0  ·  ( 𝑝 ‘ 2 ) ) )  =  0 ) ) | 
						
							| 91 | 1 3 | rrx2pyel | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 2 )  ∈  ℝ ) | 
						
							| 92 | 91 | recnd | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 2 )  ∈  ℂ ) | 
						
							| 93 | 92 | mul02d | ⊢ ( 𝑝  ∈  𝑃  →  ( 0  ·  ( 𝑝 ‘ 2 ) )  =  0 ) | 
						
							| 94 | 93 | adantl | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 0  ·  ( 𝑝 ‘ 2 ) )  =  0 ) | 
						
							| 95 | 94 | oveq2d | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 0  ·  ( 𝑝 ‘ 2 ) ) )  =  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  0 ) ) | 
						
							| 96 |  | simp1 | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐴  ∈  ℝ ) | 
						
							| 97 | 96 | recnd | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  →  𝐴  ∈  ℂ ) | 
						
							| 98 | 97 | ad3antrrr | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  𝐴  ∈  ℂ ) | 
						
							| 99 | 1 3 | rrx2pxel | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 1 )  ∈  ℝ ) | 
						
							| 100 | 99 | recnd | ⊢ ( 𝑝  ∈  𝑃  →  ( 𝑝 ‘ 1 )  ∈  ℂ ) | 
						
							| 101 | 100 | adantl | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝑝 ‘ 1 )  ∈  ℂ ) | 
						
							| 102 | 98 101 | mulcld | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  ∈  ℂ ) | 
						
							| 103 | 102 | addridd | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  0 )  =  ( 𝐴  ·  ( 𝑝 ‘ 1 ) ) ) | 
						
							| 104 | 95 103 | eqtrd | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 0  ·  ( 𝑝 ‘ 2 ) ) )  =  ( 𝐴  ·  ( 𝑝 ‘ 1 ) ) ) | 
						
							| 105 | 104 | eqeq1d | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 0  ·  ( 𝑝 ‘ 2 ) ) )  =  0  ↔  ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  =  0 ) ) | 
						
							| 106 | 98 101 | mul0ord | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  =  0  ↔  ( 𝐴  =  0  ∨  ( 𝑝 ‘ 1 )  =  0 ) ) ) | 
						
							| 107 |  | eqneqall | ⊢ ( 𝐴  =  0  →  ( 𝐴  ≠  0  →  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 108 | 107 | com12 | ⊢ ( 𝐴  ≠  0  →  ( 𝐴  =  0  →  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 109 | 108 | 3ad2ant1 | ⊢ ( ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 )  →  ( 𝐴  =  0  →  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 110 | 109 | ad2antlr | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( 𝐴  =  0  →  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 111 |  | idd | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝑝 ‘ 1 )  =  0  →  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 112 | 110 111 | jaod | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐴  =  0  ∨  ( 𝑝 ‘ 1 )  =  0 )  →  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 113 |  | olc | ⊢ ( ( 𝑝 ‘ 1 )  =  0  →  ( 𝐴  =  0  ∨  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 114 | 112 113 | impbid1 | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐴  =  0  ∨  ( 𝑝 ‘ 1 )  =  0 )  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 115 | 106 114 | bitrd | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  =  0  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 116 | 90 105 115 | 3bitrd | ⊢ ( ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  ∧  𝑝  ∈  𝑃 )  →  ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 117 | 116 | ralrimiva | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  ∧  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) )  →  ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) | 
						
							| 118 | 117 | ex | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  ( ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 )  →  ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 ) ) ) | 
						
							| 119 | 84 118 | impbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  ( ∀ 𝑝  ∈  𝑃 ( ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶  ↔  ( 𝑝 ‘ 1 )  =  0 )  ↔  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) ) ) | 
						
							| 120 | 82 119 | bitr3id | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  ( { 𝑝  ∈  𝑃  ∣  ( ( 𝐴  ·  ( 𝑝 ‘ 1 ) )  +  ( 𝐵  ·  ( 𝑝 ‘ 2 ) ) )  =  𝐶 }  =  { 𝑝  ∈  𝑃  ∣  ( 𝑝 ‘ 1 )  =  0 }  ↔  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) ) ) | 
						
							| 121 | 75 81 120 | 3bitrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ  ∧  𝐶  ∈  ℝ )  ∧  ( 𝑀  ∈  ℝ  ∧  𝑁  ∈  ℝ  ∧  𝑀  ≠  𝑁 ) )  →  ( 𝐺  =  ( 𝑋 𝐿 𝑌 )  ↔  ( 𝐴  ≠  0  ∧  𝐵  =  0  ∧  𝐶  =  0 ) ) ) |