Step |
Hyp |
Ref |
Expression |
1 |
|
line2.i |
⊢ 𝐼 = { 1 , 2 } |
2 |
|
line2.e |
⊢ 𝐸 = ( ℝ^ ‘ 𝐼 ) |
3 |
|
line2.p |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
4 |
|
line2.l |
⊢ 𝐿 = ( LineM ‘ 𝐸 ) |
5 |
|
line2.g |
⊢ 𝐺 = { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } |
6 |
|
line2y.x |
⊢ 𝑋 = { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } |
7 |
|
line2y.y |
⊢ 𝑌 = { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } |
8 |
5
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → 𝐺 = { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } ) |
9 |
|
1ex |
⊢ 1 ∈ V |
10 |
|
2ex |
⊢ 2 ∈ V |
11 |
9 10
|
pm3.2i |
⊢ ( 1 ∈ V ∧ 2 ∈ V ) |
12 |
|
c0ex |
⊢ 0 ∈ V |
13 |
12
|
jctl |
⊢ ( 𝑀 ∈ ℝ → ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ) |
14 |
|
1ne2 |
⊢ 1 ≠ 2 |
15 |
14
|
a1i |
⊢ ( 𝑀 ∈ ℝ → 1 ≠ 2 ) |
16 |
|
fprg |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ { 0 , 𝑀 } ) |
17 |
|
0red |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → 0 ∈ ℝ ) |
18 |
|
simp2r |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → 𝑀 ∈ ℝ ) |
19 |
17 18
|
prssd |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → { 0 , 𝑀 } ⊆ ℝ ) |
20 |
16 19
|
fssd |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
21 |
11 13 15 20
|
mp3an2i |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
22 |
1
|
feq2i |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ↔ { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
23 |
21 22
|
sylibr |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ) |
24 |
|
reex |
⊢ ℝ ∈ V |
25 |
|
prex |
⊢ { 1 , 2 } ∈ V |
26 |
1 25
|
eqeltri |
⊢ 𝐼 ∈ V |
27 |
24 26
|
elmap |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ∈ ( ℝ ↑m 𝐼 ) ↔ { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ) |
28 |
23 27
|
sylibr |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ∈ ( ℝ ↑m 𝐼 ) ) |
29 |
28 6 3
|
3eltr4g |
⊢ ( 𝑀 ∈ ℝ → 𝑋 ∈ 𝑃 ) |
30 |
29
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → 𝑋 ∈ 𝑃 ) |
31 |
12
|
jctl |
⊢ ( 𝑁 ∈ ℝ → ( 0 ∈ V ∧ 𝑁 ∈ ℝ ) ) |
32 |
14
|
a1i |
⊢ ( 𝑁 ∈ ℝ → 1 ≠ 2 ) |
33 |
|
fprg |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑁 ∈ ℝ ) ∧ 1 ≠ 2 ) → { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } : { 1 , 2 } ⟶ { 0 , 𝑁 } ) |
34 |
11 31 32 33
|
mp3an2i |
⊢ ( 𝑁 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } : { 1 , 2 } ⟶ { 0 , 𝑁 } ) |
35 |
|
0re |
⊢ 0 ∈ ℝ |
36 |
|
prssi |
⊢ ( ( 0 ∈ ℝ ∧ 𝑁 ∈ ℝ ) → { 0 , 𝑁 } ⊆ ℝ ) |
37 |
35 36
|
mpan |
⊢ ( 𝑁 ∈ ℝ → { 0 , 𝑁 } ⊆ ℝ ) |
38 |
34 37
|
fssd |
⊢ ( 𝑁 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } : { 1 , 2 } ⟶ ℝ ) |
39 |
1
|
feq2i |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } : 𝐼 ⟶ ℝ ↔ { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } : { 1 , 2 } ⟶ ℝ ) |
40 |
38 39
|
sylibr |
⊢ ( 𝑁 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } : 𝐼 ⟶ ℝ ) |
41 |
24 26
|
pm3.2i |
⊢ ( ℝ ∈ V ∧ 𝐼 ∈ V ) |
42 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝐼 ∈ V ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } ∈ ( ℝ ↑m 𝐼 ) ↔ { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } : 𝐼 ⟶ ℝ ) ) |
43 |
41 42
|
mp1i |
⊢ ( 𝑁 ∈ ℝ → ( { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } ∈ ( ℝ ↑m 𝐼 ) ↔ { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } : 𝐼 ⟶ ℝ ) ) |
44 |
40 43
|
mpbird |
⊢ ( 𝑁 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } ∈ ( ℝ ↑m 𝐼 ) ) |
45 |
44 7 3
|
3eltr4g |
⊢ ( 𝑁 ∈ ℝ → 𝑌 ∈ 𝑃 ) |
46 |
45
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → 𝑌 ∈ 𝑃 ) |
47 |
6
|
fveq1i |
⊢ ( 𝑋 ‘ 1 ) = ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) |
48 |
9 12 14
|
3pm3.2i |
⊢ ( 1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2 ) |
49 |
|
fvpr1g |
⊢ ( ( 1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2 ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 0 ) |
50 |
48 49
|
mp1i |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 0 ) |
51 |
47 50
|
syl5eq |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → ( 𝑋 ‘ 1 ) = 0 ) |
52 |
7
|
fveq1i |
⊢ ( 𝑌 ‘ 1 ) = ( { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } ‘ 1 ) |
53 |
|
fvpr1g |
⊢ ( ( 1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2 ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } ‘ 1 ) = 0 ) |
54 |
48 53
|
mp1i |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } ‘ 1 ) = 0 ) |
55 |
52 54
|
syl5eq |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → ( 𝑌 ‘ 1 ) = 0 ) |
56 |
51 55
|
eqtr4d |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ) |
57 |
|
simp3 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → 𝑀 ≠ 𝑁 ) |
58 |
6
|
fveq1i |
⊢ ( 𝑋 ‘ 2 ) = ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) |
59 |
|
simp1 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → 𝑀 ∈ ℝ ) |
60 |
14
|
a1i |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → 1 ≠ 2 ) |
61 |
|
fvpr2g |
⊢ ( ( 2 ∈ V ∧ 𝑀 ∈ ℝ ∧ 1 ≠ 2 ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) = 𝑀 ) |
62 |
10 59 60 61
|
mp3an2i |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) = 𝑀 ) |
63 |
58 62
|
syl5eq |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → ( 𝑋 ‘ 2 ) = 𝑀 ) |
64 |
7
|
fveq1i |
⊢ ( 𝑌 ‘ 2 ) = ( { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } ‘ 2 ) |
65 |
|
simp2 |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → 𝑁 ∈ ℝ ) |
66 |
|
fvpr2g |
⊢ ( ( 2 ∈ V ∧ 𝑁 ∈ ℝ ∧ 1 ≠ 2 ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } ‘ 2 ) = 𝑁 ) |
67 |
10 65 60 66
|
mp3an2i |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑁 〉 } ‘ 2 ) = 𝑁 ) |
68 |
64 67
|
syl5eq |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → ( 𝑌 ‘ 2 ) = 𝑁 ) |
69 |
57 63 68
|
3netr4d |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) |
70 |
56 69
|
jca |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) |
71 |
30 46 70
|
3jca |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) → ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) ) |
73 |
1 2 3 4
|
rrx2vlinest |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ ( ( 𝑋 ‘ 1 ) = ( 𝑌 ‘ 1 ) ∧ ( 𝑋 ‘ 2 ) ≠ ( 𝑌 ‘ 2 ) ) ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 1 ) = ( 𝑋 ‘ 1 ) } ) |
74 |
72 73
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 1 ) = ( 𝑋 ‘ 1 ) } ) |
75 |
8 74
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → ( 𝐺 = ( 𝑋 𝐿 𝑌 ) ↔ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 1 ) = ( 𝑋 ‘ 1 ) } ) ) |
76 |
48 49
|
ax-mp |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 0 |
77 |
47 76
|
eqtri |
⊢ ( 𝑋 ‘ 1 ) = 0 |
78 |
77
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → ( 𝑋 ‘ 1 ) = 0 ) |
79 |
78
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → ( ( 𝑝 ‘ 1 ) = ( 𝑋 ‘ 1 ) ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
80 |
79
|
rabbidv |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 1 ) = ( 𝑋 ‘ 1 ) } = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 1 ) = 0 } ) |
81 |
80
|
eqeq2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → ( { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 1 ) = ( 𝑋 ‘ 1 ) } ↔ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 1 ) = 0 } ) ) |
82 |
|
rabbi |
⊢ ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ↔ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 1 ) = 0 } ) |
83 |
1 3
|
line2ylem |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) → ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ) |
84 |
83
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) → ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ) |
85 |
|
oveq1 |
⊢ ( 𝐵 = 0 → ( 𝐵 · ( 𝑝 ‘ 2 ) ) = ( 0 · ( 𝑝 ‘ 2 ) ) ) |
86 |
85
|
3ad2ant2 |
⊢ ( ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) → ( 𝐵 · ( 𝑝 ‘ 2 ) ) = ( 0 · ( 𝑝 ‘ 2 ) ) ) |
87 |
86
|
oveq2d |
⊢ ( ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 0 · ( 𝑝 ‘ 2 ) ) ) ) |
88 |
|
simp3 |
⊢ ( ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) → 𝐶 = 0 ) |
89 |
87 88
|
eqeq12d |
⊢ ( ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 0 · ( 𝑝 ‘ 2 ) ) ) = 0 ) ) |
90 |
89
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 0 · ( 𝑝 ‘ 2 ) ) ) = 0 ) ) |
91 |
1 3
|
rrx2pyel |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 2 ) ∈ ℝ ) |
92 |
91
|
recnd |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 2 ) ∈ ℂ ) |
93 |
92
|
mul02d |
⊢ ( 𝑝 ∈ 𝑃 → ( 0 · ( 𝑝 ‘ 2 ) ) = 0 ) |
94 |
93
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 0 · ( 𝑝 ‘ 2 ) ) = 0 ) |
95 |
94
|
oveq2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 0 · ( 𝑝 ‘ 2 ) ) ) = ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + 0 ) ) |
96 |
|
simp1 |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℝ ) |
97 |
96
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
98 |
97
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → 𝐴 ∈ ℂ ) |
99 |
1 3
|
rrx2pxel |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 1 ) ∈ ℝ ) |
100 |
99
|
recnd |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 1 ) ∈ ℂ ) |
101 |
100
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑝 ‘ 1 ) ∈ ℂ ) |
102 |
98 101
|
mulcld |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝐴 · ( 𝑝 ‘ 1 ) ) ∈ ℂ ) |
103 |
102
|
addid1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + 0 ) = ( 𝐴 · ( 𝑝 ‘ 1 ) ) ) |
104 |
95 103
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 0 · ( 𝑝 ‘ 2 ) ) ) = ( 𝐴 · ( 𝑝 ‘ 1 ) ) ) |
105 |
104
|
eqeq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 0 · ( 𝑝 ‘ 2 ) ) ) = 0 ↔ ( 𝐴 · ( 𝑝 ‘ 1 ) ) = 0 ) ) |
106 |
98 101
|
mul0ord |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) = 0 ↔ ( 𝐴 = 0 ∨ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
107 |
|
eqneqall |
⊢ ( 𝐴 = 0 → ( 𝐴 ≠ 0 → ( 𝑝 ‘ 1 ) = 0 ) ) |
108 |
107
|
com12 |
⊢ ( 𝐴 ≠ 0 → ( 𝐴 = 0 → ( 𝑝 ‘ 1 ) = 0 ) ) |
109 |
108
|
3ad2ant1 |
⊢ ( ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) → ( 𝐴 = 0 → ( 𝑝 ‘ 1 ) = 0 ) ) |
110 |
109
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝐴 = 0 → ( 𝑝 ‘ 1 ) = 0 ) ) |
111 |
|
idd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝑝 ‘ 1 ) = 0 → ( 𝑝 ‘ 1 ) = 0 ) ) |
112 |
110 111
|
jaod |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐴 = 0 ∨ ( 𝑝 ‘ 1 ) = 0 ) → ( 𝑝 ‘ 1 ) = 0 ) ) |
113 |
|
olc |
⊢ ( ( 𝑝 ‘ 1 ) = 0 → ( 𝐴 = 0 ∨ ( 𝑝 ‘ 1 ) = 0 ) ) |
114 |
112 113
|
impbid1 |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐴 = 0 ∨ ( 𝑝 ‘ 1 ) = 0 ) ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
115 |
106 114
|
bitrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) = 0 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
116 |
90 105 115
|
3bitrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
117 |
116
|
ralrimiva |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) ∧ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) → ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) |
118 |
117
|
ex |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → ( ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) → ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ) ) |
119 |
84 118
|
impbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 1 ) = 0 ) ↔ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ) |
120 |
82 119
|
bitr3id |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → ( { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } = { 𝑝 ∈ 𝑃 ∣ ( 𝑝 ‘ 1 ) = 0 } ↔ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ) |
121 |
75 81 120
|
3bitrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) ∧ ( 𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ≠ 𝑁 ) ) → ( 𝐺 = ( 𝑋 𝐿 𝑌 ) ↔ ( 𝐴 ≠ 0 ∧ 𝐵 = 0 ∧ 𝐶 = 0 ) ) ) |