| Step | Hyp | Ref | Expression | 
						
							| 1 |  | line2.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | line2.e |  |-  E = ( RR^ ` I ) | 
						
							| 3 |  | line2.p |  |-  P = ( RR ^m I ) | 
						
							| 4 |  | line2.l |  |-  L = ( LineM ` E ) | 
						
							| 5 |  | line2.g |  |-  G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } | 
						
							| 6 |  | line2y.x |  |-  X = { <. 1 , 0 >. , <. 2 , M >. } | 
						
							| 7 |  | line2y.y |  |-  Y = { <. 1 , 0 >. , <. 2 , N >. } | 
						
							| 8 | 5 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) | 
						
							| 9 |  | 1ex |  |-  1 e. _V | 
						
							| 10 |  | 2ex |  |-  2 e. _V | 
						
							| 11 | 9 10 | pm3.2i |  |-  ( 1 e. _V /\ 2 e. _V ) | 
						
							| 12 |  | c0ex |  |-  0 e. _V | 
						
							| 13 | 12 | jctl |  |-  ( M e. RR -> ( 0 e. _V /\ M e. RR ) ) | 
						
							| 14 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 15 | 14 | a1i |  |-  ( M e. RR -> 1 =/= 2 ) | 
						
							| 16 |  | fprg |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> { 0 , M } ) | 
						
							| 17 |  | 0red |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> 0 e. RR ) | 
						
							| 18 |  | simp2r |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> M e. RR ) | 
						
							| 19 | 17 18 | prssd |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { 0 , M } C_ RR ) | 
						
							| 20 | 16 19 | fssd |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ M e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) | 
						
							| 21 | 11 13 15 20 | mp3an2i |  |-  ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) | 
						
							| 22 | 1 | feq2i |  |-  ( { <. 1 , 0 >. , <. 2 , M >. } : I --> RR <-> { <. 1 , 0 >. , <. 2 , M >. } : { 1 , 2 } --> RR ) | 
						
							| 23 | 21 22 | sylibr |  |-  ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } : I --> RR ) | 
						
							| 24 |  | reex |  |-  RR e. _V | 
						
							| 25 |  | prex |  |-  { 1 , 2 } e. _V | 
						
							| 26 | 1 25 | eqeltri |  |-  I e. _V | 
						
							| 27 | 24 26 | elmap |  |-  ( { <. 1 , 0 >. , <. 2 , M >. } e. ( RR ^m I ) <-> { <. 1 , 0 >. , <. 2 , M >. } : I --> RR ) | 
						
							| 28 | 23 27 | sylibr |  |-  ( M e. RR -> { <. 1 , 0 >. , <. 2 , M >. } e. ( RR ^m I ) ) | 
						
							| 29 | 28 6 3 | 3eltr4g |  |-  ( M e. RR -> X e. P ) | 
						
							| 30 | 29 | 3ad2ant1 |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> X e. P ) | 
						
							| 31 | 12 | jctl |  |-  ( N e. RR -> ( 0 e. _V /\ N e. RR ) ) | 
						
							| 32 | 14 | a1i |  |-  ( N e. RR -> 1 =/= 2 ) | 
						
							| 33 |  | fprg |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ N e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , N >. } : { 1 , 2 } --> { 0 , N } ) | 
						
							| 34 | 11 31 32 33 | mp3an2i |  |-  ( N e. RR -> { <. 1 , 0 >. , <. 2 , N >. } : { 1 , 2 } --> { 0 , N } ) | 
						
							| 35 |  | 0re |  |-  0 e. RR | 
						
							| 36 |  | prssi |  |-  ( ( 0 e. RR /\ N e. RR ) -> { 0 , N } C_ RR ) | 
						
							| 37 | 35 36 | mpan |  |-  ( N e. RR -> { 0 , N } C_ RR ) | 
						
							| 38 | 34 37 | fssd |  |-  ( N e. RR -> { <. 1 , 0 >. , <. 2 , N >. } : { 1 , 2 } --> RR ) | 
						
							| 39 | 1 | feq2i |  |-  ( { <. 1 , 0 >. , <. 2 , N >. } : I --> RR <-> { <. 1 , 0 >. , <. 2 , N >. } : { 1 , 2 } --> RR ) | 
						
							| 40 | 38 39 | sylibr |  |-  ( N e. RR -> { <. 1 , 0 >. , <. 2 , N >. } : I --> RR ) | 
						
							| 41 | 24 26 | pm3.2i |  |-  ( RR e. _V /\ I e. _V ) | 
						
							| 42 |  | elmapg |  |-  ( ( RR e. _V /\ I e. _V ) -> ( { <. 1 , 0 >. , <. 2 , N >. } e. ( RR ^m I ) <-> { <. 1 , 0 >. , <. 2 , N >. } : I --> RR ) ) | 
						
							| 43 | 41 42 | mp1i |  |-  ( N e. RR -> ( { <. 1 , 0 >. , <. 2 , N >. } e. ( RR ^m I ) <-> { <. 1 , 0 >. , <. 2 , N >. } : I --> RR ) ) | 
						
							| 44 | 40 43 | mpbird |  |-  ( N e. RR -> { <. 1 , 0 >. , <. 2 , N >. } e. ( RR ^m I ) ) | 
						
							| 45 | 44 7 3 | 3eltr4g |  |-  ( N e. RR -> Y e. P ) | 
						
							| 46 | 45 | 3ad2ant2 |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> Y e. P ) | 
						
							| 47 | 6 | fveq1i |  |-  ( X ` 1 ) = ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) | 
						
							| 48 | 9 12 14 | 3pm3.2i |  |-  ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) | 
						
							| 49 |  | fvpr1g |  |-  ( ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) | 
						
							| 50 | 48 49 | mp1i |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 ) | 
						
							| 51 | 47 50 | eqtrid |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( X ` 1 ) = 0 ) | 
						
							| 52 | 7 | fveq1i |  |-  ( Y ` 1 ) = ( { <. 1 , 0 >. , <. 2 , N >. } ` 1 ) | 
						
							| 53 |  | fvpr1g |  |-  ( ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , N >. } ` 1 ) = 0 ) | 
						
							| 54 | 48 53 | mp1i |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( { <. 1 , 0 >. , <. 2 , N >. } ` 1 ) = 0 ) | 
						
							| 55 | 52 54 | eqtrid |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( Y ` 1 ) = 0 ) | 
						
							| 56 | 51 55 | eqtr4d |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( X ` 1 ) = ( Y ` 1 ) ) | 
						
							| 57 |  | simp3 |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> M =/= N ) | 
						
							| 58 | 6 | fveq1i |  |-  ( X ` 2 ) = ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) | 
						
							| 59 |  | simp1 |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> M e. RR ) | 
						
							| 60 | 14 | a1i |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> 1 =/= 2 ) | 
						
							| 61 |  | fvpr2g |  |-  ( ( 2 e. _V /\ M e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) = M ) | 
						
							| 62 | 10 59 60 61 | mp3an2i |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( { <. 1 , 0 >. , <. 2 , M >. } ` 2 ) = M ) | 
						
							| 63 | 58 62 | eqtrid |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( X ` 2 ) = M ) | 
						
							| 64 | 7 | fveq1i |  |-  ( Y ` 2 ) = ( { <. 1 , 0 >. , <. 2 , N >. } ` 2 ) | 
						
							| 65 |  | simp2 |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> N e. RR ) | 
						
							| 66 |  | fvpr2g |  |-  ( ( 2 e. _V /\ N e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , N >. } ` 2 ) = N ) | 
						
							| 67 | 10 65 60 66 | mp3an2i |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( { <. 1 , 0 >. , <. 2 , N >. } ` 2 ) = N ) | 
						
							| 68 | 64 67 | eqtrid |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( Y ` 2 ) = N ) | 
						
							| 69 | 57 63 68 | 3netr4d |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( X ` 2 ) =/= ( Y ` 2 ) ) | 
						
							| 70 | 56 69 | jca |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) | 
						
							| 71 | 30 46 70 | 3jca |  |-  ( ( M e. RR /\ N e. RR /\ M =/= N ) -> ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) ) | 
						
							| 72 | 71 | adantl |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) ) | 
						
							| 73 | 1 2 3 4 | rrx2vlinest |  |-  ( ( X e. P /\ Y e. P /\ ( ( X ` 1 ) = ( Y ` 1 ) /\ ( X ` 2 ) =/= ( Y ` 2 ) ) ) -> ( X L Y ) = { p e. P | ( p ` 1 ) = ( X ` 1 ) } ) | 
						
							| 74 | 72 73 | syl |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( X L Y ) = { p e. P | ( p ` 1 ) = ( X ` 1 ) } ) | 
						
							| 75 | 8 74 | eqeq12d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( G = ( X L Y ) <-> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( p ` 1 ) = ( X ` 1 ) } ) ) | 
						
							| 76 | 48 49 | ax-mp |  |-  ( { <. 1 , 0 >. , <. 2 , M >. } ` 1 ) = 0 | 
						
							| 77 | 47 76 | eqtri |  |-  ( X ` 1 ) = 0 | 
						
							| 78 | 77 | a1i |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( X ` 1 ) = 0 ) | 
						
							| 79 | 78 | eqeq2d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( ( p ` 1 ) = ( X ` 1 ) <-> ( p ` 1 ) = 0 ) ) | 
						
							| 80 | 79 | rabbidv |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> { p e. P | ( p ` 1 ) = ( X ` 1 ) } = { p e. P | ( p ` 1 ) = 0 } ) | 
						
							| 81 | 80 | eqeq2d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( p ` 1 ) = ( X ` 1 ) } <-> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( p ` 1 ) = 0 } ) ) | 
						
							| 82 |  | rabbi |  |-  ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( p ` 1 ) = 0 } ) | 
						
							| 83 | 1 3 | line2ylem |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) -> ( A =/= 0 /\ B = 0 /\ C = 0 ) ) ) | 
						
							| 84 | 83 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) -> ( A =/= 0 /\ B = 0 /\ C = 0 ) ) ) | 
						
							| 85 |  | oveq1 |  |-  ( B = 0 -> ( B x. ( p ` 2 ) ) = ( 0 x. ( p ` 2 ) ) ) | 
						
							| 86 | 85 | 3ad2ant2 |  |-  ( ( A =/= 0 /\ B = 0 /\ C = 0 ) -> ( B x. ( p ` 2 ) ) = ( 0 x. ( p ` 2 ) ) ) | 
						
							| 87 | 86 | oveq2d |  |-  ( ( A =/= 0 /\ B = 0 /\ C = 0 ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( A x. ( p ` 1 ) ) + ( 0 x. ( p ` 2 ) ) ) ) | 
						
							| 88 |  | simp3 |  |-  ( ( A =/= 0 /\ B = 0 /\ C = 0 ) -> C = 0 ) | 
						
							| 89 | 87 88 | eqeq12d |  |-  ( ( A =/= 0 /\ B = 0 /\ C = 0 ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. ( p ` 1 ) ) + ( 0 x. ( p ` 2 ) ) ) = 0 ) ) | 
						
							| 90 | 89 | ad2antlr |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. ( p ` 1 ) ) + ( 0 x. ( p ` 2 ) ) ) = 0 ) ) | 
						
							| 91 | 1 3 | rrx2pyel |  |-  ( p e. P -> ( p ` 2 ) e. RR ) | 
						
							| 92 | 91 | recnd |  |-  ( p e. P -> ( p ` 2 ) e. CC ) | 
						
							| 93 | 92 | mul02d |  |-  ( p e. P -> ( 0 x. ( p ` 2 ) ) = 0 ) | 
						
							| 94 | 93 | adantl |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( 0 x. ( p ` 2 ) ) = 0 ) | 
						
							| 95 | 94 | oveq2d |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( 0 x. ( p ` 2 ) ) ) = ( ( A x. ( p ` 1 ) ) + 0 ) ) | 
						
							| 96 |  | simp1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) | 
						
							| 97 | 96 | recnd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) | 
						
							| 98 | 97 | ad3antrrr |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> A e. CC ) | 
						
							| 99 | 1 3 | rrx2pxel |  |-  ( p e. P -> ( p ` 1 ) e. RR ) | 
						
							| 100 | 99 | recnd |  |-  ( p e. P -> ( p ` 1 ) e. CC ) | 
						
							| 101 | 100 | adantl |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( p ` 1 ) e. CC ) | 
						
							| 102 | 98 101 | mulcld |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) e. CC ) | 
						
							| 103 | 102 | addridd |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + 0 ) = ( A x. ( p ` 1 ) ) ) | 
						
							| 104 | 95 103 | eqtrd |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( 0 x. ( p ` 2 ) ) ) = ( A x. ( p ` 1 ) ) ) | 
						
							| 105 | 104 | eqeq1d |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( 0 x. ( p ` 2 ) ) ) = 0 <-> ( A x. ( p ` 1 ) ) = 0 ) ) | 
						
							| 106 | 98 101 | mul0ord |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) = 0 <-> ( A = 0 \/ ( p ` 1 ) = 0 ) ) ) | 
						
							| 107 |  | eqneqall |  |-  ( A = 0 -> ( A =/= 0 -> ( p ` 1 ) = 0 ) ) | 
						
							| 108 | 107 | com12 |  |-  ( A =/= 0 -> ( A = 0 -> ( p ` 1 ) = 0 ) ) | 
						
							| 109 | 108 | 3ad2ant1 |  |-  ( ( A =/= 0 /\ B = 0 /\ C = 0 ) -> ( A = 0 -> ( p ` 1 ) = 0 ) ) | 
						
							| 110 | 109 | ad2antlr |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( A = 0 -> ( p ` 1 ) = 0 ) ) | 
						
							| 111 |  | idd |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( p ` 1 ) = 0 -> ( p ` 1 ) = 0 ) ) | 
						
							| 112 | 110 111 | jaod |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A = 0 \/ ( p ` 1 ) = 0 ) -> ( p ` 1 ) = 0 ) ) | 
						
							| 113 |  | olc |  |-  ( ( p ` 1 ) = 0 -> ( A = 0 \/ ( p ` 1 ) = 0 ) ) | 
						
							| 114 | 112 113 | impbid1 |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A = 0 \/ ( p ` 1 ) = 0 ) <-> ( p ` 1 ) = 0 ) ) | 
						
							| 115 | 106 114 | bitrd |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) = 0 <-> ( p ` 1 ) = 0 ) ) | 
						
							| 116 | 90 105 115 | 3bitrd |  |-  ( ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) | 
						
							| 117 | 116 | ralrimiva |  |-  ( ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) /\ ( A =/= 0 /\ B = 0 /\ C = 0 ) ) -> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) | 
						
							| 118 | 117 | ex |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( ( A =/= 0 /\ B = 0 /\ C = 0 ) -> A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) | 
						
							| 119 | 84 118 | impbid |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> ( A =/= 0 /\ B = 0 /\ C = 0 ) ) ) | 
						
							| 120 | 82 119 | bitr3id |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( p ` 1 ) = 0 } <-> ( A =/= 0 /\ B = 0 /\ C = 0 ) ) ) | 
						
							| 121 | 75 81 120 | 3bitrd |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( M e. RR /\ N e. RR /\ M =/= N ) ) -> ( G = ( X L Y ) <-> ( A =/= 0 /\ B = 0 /\ C = 0 ) ) ) |