| Step | Hyp | Ref | Expression | 
						
							| 1 |  | line2ylem.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | line2ylem.p |  |-  P = ( RR ^m I ) | 
						
							| 3 |  | ianor |  |-  ( -. ( ( A =/= 0 /\ B = 0 ) /\ C = 0 ) <-> ( -. ( A =/= 0 /\ B = 0 ) \/ -. C = 0 ) ) | 
						
							| 4 |  | df-ne |  |-  ( C =/= 0 <-> -. C = 0 ) | 
						
							| 5 |  | 0re |  |-  0 e. RR | 
						
							| 6 | 1 2 | prelrrx2 |  |-  ( ( 0 e. RR /\ 0 e. RR ) -> { <. 1 , 0 >. , <. 2 , 0 >. } e. P ) | 
						
							| 7 | 5 5 6 | mp2an |  |-  { <. 1 , 0 >. , <. 2 , 0 >. } e. P | 
						
							| 8 |  | eqneqall |  |-  ( C = 0 -> ( C =/= 0 -> -. 0 = 0 ) ) | 
						
							| 9 | 8 | com12 |  |-  ( C =/= 0 -> ( C = 0 -> -. 0 = 0 ) ) | 
						
							| 10 |  | eqid |  |-  0 = 0 | 
						
							| 11 | 10 | pm2.24i |  |-  ( -. 0 = 0 -> C = 0 ) | 
						
							| 12 | 9 11 | impbid1 |  |-  ( C =/= 0 -> ( C = 0 <-> -. 0 = 0 ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C =/= 0 ) -> ( C = 0 <-> -. 0 = 0 ) ) | 
						
							| 14 |  | xor3 |  |-  ( -. ( C = 0 <-> 0 = 0 ) <-> ( C = 0 <-> -. 0 = 0 ) ) | 
						
							| 15 | 13 14 | sylibr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C =/= 0 ) -> -. ( C = 0 <-> 0 = 0 ) ) | 
						
							| 16 |  | simp1 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) | 
						
							| 17 | 16 | recnd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) | 
						
							| 18 | 17 | mul01d |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. 0 ) = 0 ) | 
						
							| 19 |  | simp2 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) | 
						
							| 20 | 19 | recnd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) | 
						
							| 21 | 20 | mul01d |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B x. 0 ) = 0 ) | 
						
							| 22 | 18 21 | oveq12d |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. 0 ) + ( B x. 0 ) ) = ( 0 + 0 ) ) | 
						
							| 23 |  | 00id |  |-  ( 0 + 0 ) = 0 | 
						
							| 24 | 22 23 | eqtrdi |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A x. 0 ) + ( B x. 0 ) ) = 0 ) | 
						
							| 25 | 24 | eqeq1d |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> 0 = C ) ) | 
						
							| 26 |  | eqcom |  |-  ( 0 = C <-> C = 0 ) | 
						
							| 27 | 25 26 | bitrdi |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> C = 0 ) ) | 
						
							| 28 | 27 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C =/= 0 ) -> ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> C = 0 ) ) | 
						
							| 29 | 28 | bibi1d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C =/= 0 ) -> ( ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> 0 = 0 ) <-> ( C = 0 <-> 0 = 0 ) ) ) | 
						
							| 30 | 15 29 | mtbird |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C =/= 0 ) -> -. ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> 0 = 0 ) ) | 
						
							| 31 |  | fveq1 |  |-  ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( p ` 1 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) ) | 
						
							| 32 |  | 1ex |  |-  1 e. _V | 
						
							| 33 |  | c0ex |  |-  0 e. _V | 
						
							| 34 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 35 |  | fvpr1g |  |-  ( ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 ) | 
						
							| 36 | 32 33 34 35 | mp3an |  |-  ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 1 ) = 0 | 
						
							| 37 | 31 36 | eqtrdi |  |-  ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( p ` 1 ) = 0 ) | 
						
							| 38 | 37 | oveq2d |  |-  ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( A x. ( p ` 1 ) ) = ( A x. 0 ) ) | 
						
							| 39 |  | fveq1 |  |-  ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( p ` 2 ) = ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) ) | 
						
							| 40 |  | 2ex |  |-  2 e. _V | 
						
							| 41 |  | fvpr2g |  |-  ( ( 2 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 ) | 
						
							| 42 | 40 33 34 41 | mp3an |  |-  ( { <. 1 , 0 >. , <. 2 , 0 >. } ` 2 ) = 0 | 
						
							| 43 | 39 42 | eqtrdi |  |-  ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( p ` 2 ) = 0 ) | 
						
							| 44 | 43 | oveq2d |  |-  ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( B x. ( p ` 2 ) ) = ( B x. 0 ) ) | 
						
							| 45 | 38 44 | oveq12d |  |-  ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( A x. 0 ) + ( B x. 0 ) ) ) | 
						
							| 46 | 45 | eqeq1d |  |-  ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. 0 ) + ( B x. 0 ) ) = C ) ) | 
						
							| 47 | 37 | eqeq1d |  |-  ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( ( p ` 1 ) = 0 <-> 0 = 0 ) ) | 
						
							| 48 | 46 47 | bibi12d |  |-  ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> 0 = 0 ) ) ) | 
						
							| 49 | 48 | notbid |  |-  ( p = { <. 1 , 0 >. , <. 2 , 0 >. } -> ( -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> -. ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> 0 = 0 ) ) ) | 
						
							| 50 | 49 | rspcev |  |-  ( ( { <. 1 , 0 >. , <. 2 , 0 >. } e. P /\ -. ( ( ( A x. 0 ) + ( B x. 0 ) ) = C <-> 0 = 0 ) ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) | 
						
							| 51 | 7 30 50 | sylancr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ C =/= 0 ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) | 
						
							| 52 | 51 | expcom |  |-  ( C =/= 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) | 
						
							| 53 | 4 52 | sylbir |  |-  ( -. C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) | 
						
							| 54 |  | notnotb |  |-  ( C = 0 <-> -. -. C = 0 ) | 
						
							| 55 |  | ianor |  |-  ( -. ( A =/= 0 /\ B = 0 ) <-> ( -. A =/= 0 \/ -. B = 0 ) ) | 
						
							| 56 |  | df-ne |  |-  ( B =/= 0 <-> -. B = 0 ) | 
						
							| 57 |  | 1red |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> 1 e. RR ) | 
						
							| 58 | 16 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> A e. RR ) | 
						
							| 59 | 58 | renegcld |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> -u A e. RR ) | 
						
							| 60 | 19 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> B e. RR ) | 
						
							| 61 |  | simprl |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> B =/= 0 ) | 
						
							| 62 | 59 60 61 | redivcld |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( -u A / B ) e. RR ) | 
						
							| 63 | 1 2 | prelrrx2 |  |-  ( ( 1 e. RR /\ ( -u A / B ) e. RR ) -> { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } e. P ) | 
						
							| 64 | 57 62 63 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } e. P ) | 
						
							| 65 |  | ax-1ne0 |  |-  1 =/= 0 | 
						
							| 66 | 65 | neii |  |-  -. 1 = 0 | 
						
							| 67 | 10 66 | 2th |  |-  ( 0 = 0 <-> -. 1 = 0 ) | 
						
							| 68 |  | xor3 |  |-  ( -. ( 0 = 0 <-> 1 = 0 ) <-> ( 0 = 0 <-> -. 1 = 0 ) ) | 
						
							| 69 | 67 68 | mpbir |  |-  -. ( 0 = 0 <-> 1 = 0 ) | 
						
							| 70 | 17 | mulridd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A x. 1 ) = A ) | 
						
							| 71 | 70 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( A x. 1 ) = A ) | 
						
							| 72 | 17 | negcld |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> -u A e. CC ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> -u A e. CC ) | 
						
							| 74 | 20 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> B e. CC ) | 
						
							| 75 | 73 74 61 | divcan2d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( B x. ( -u A / B ) ) = -u A ) | 
						
							| 76 | 71 75 | oveq12d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = ( A + -u A ) ) | 
						
							| 77 | 17 | negidd |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + -u A ) = 0 ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( A + -u A ) = 0 ) | 
						
							| 79 | 76 78 | eqtrd |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = 0 ) | 
						
							| 80 |  | simprr |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> C = 0 ) | 
						
							| 81 | 79 80 | eqeq12d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C <-> 0 = 0 ) ) | 
						
							| 82 | 81 | bibi1d |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> ( ( ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C <-> 1 = 0 ) <-> ( 0 = 0 <-> 1 = 0 ) ) ) | 
						
							| 83 | 69 82 | mtbiri |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> -. ( ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C <-> 1 = 0 ) ) | 
						
							| 84 |  | fveq1 |  |-  ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( p ` 1 ) = ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } ` 1 ) ) | 
						
							| 85 |  | fvpr1g |  |-  ( ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } ` 1 ) = 1 ) | 
						
							| 86 | 32 32 34 85 | mp3an |  |-  ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } ` 1 ) = 1 | 
						
							| 87 | 84 86 | eqtrdi |  |-  ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( p ` 1 ) = 1 ) | 
						
							| 88 | 87 | oveq2d |  |-  ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( A x. ( p ` 1 ) ) = ( A x. 1 ) ) | 
						
							| 89 |  | fveq1 |  |-  ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( p ` 2 ) = ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } ` 2 ) ) | 
						
							| 90 |  | ovex |  |-  ( -u A / B ) e. _V | 
						
							| 91 |  | fvpr2g |  |-  ( ( 2 e. _V /\ ( -u A / B ) e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } ` 2 ) = ( -u A / B ) ) | 
						
							| 92 | 40 90 34 91 | mp3an |  |-  ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } ` 2 ) = ( -u A / B ) | 
						
							| 93 | 89 92 | eqtrdi |  |-  ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( p ` 2 ) = ( -u A / B ) ) | 
						
							| 94 | 93 | oveq2d |  |-  ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( B x. ( p ` 2 ) ) = ( B x. ( -u A / B ) ) ) | 
						
							| 95 | 88 94 | oveq12d |  |-  ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) ) | 
						
							| 96 | 95 | eqeq1d |  |-  ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C ) ) | 
						
							| 97 | 87 | eqeq1d |  |-  ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( ( p ` 1 ) = 0 <-> 1 = 0 ) ) | 
						
							| 98 | 96 97 | bibi12d |  |-  ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> ( ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C <-> 1 = 0 ) ) ) | 
						
							| 99 | 98 | notbid |  |-  ( p = { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } -> ( -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> -. ( ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C <-> 1 = 0 ) ) ) | 
						
							| 100 | 99 | rspcev |  |-  ( ( { <. 1 , 1 >. , <. 2 , ( -u A / B ) >. } e. P /\ -. ( ( ( A x. 1 ) + ( B x. ( -u A / B ) ) ) = C <-> 1 = 0 ) ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) | 
						
							| 101 | 64 83 100 | syl2anc |  |-  ( ( ( A e. RR /\ B e. RR /\ C e. RR ) /\ ( B =/= 0 /\ C = 0 ) ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) | 
						
							| 102 | 101 | expcom |  |-  ( ( B =/= 0 /\ C = 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) | 
						
							| 103 | 102 | ex |  |-  ( B =/= 0 -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) | 
						
							| 104 | 56 103 | sylbir |  |-  ( -. B = 0 -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) | 
						
							| 105 |  | notnotb |  |-  ( B = 0 <-> -. -. B = 0 ) | 
						
							| 106 |  | nne |  |-  ( -. A =/= 0 <-> A = 0 ) | 
						
							| 107 | 106 | bicomi |  |-  ( A = 0 <-> -. A =/= 0 ) | 
						
							| 108 |  | 1re |  |-  1 e. RR | 
						
							| 109 | 1 2 | prelrrx2 |  |-  ( ( 1 e. RR /\ 1 e. RR ) -> { <. 1 , 1 >. , <. 2 , 1 >. } e. P ) | 
						
							| 110 | 108 108 109 | mp2an |  |-  { <. 1 , 1 >. , <. 2 , 1 >. } e. P | 
						
							| 111 |  | oveq1 |  |-  ( A = 0 -> ( A x. 1 ) = ( 0 x. 1 ) ) | 
						
							| 112 | 111 | adantl |  |-  ( ( B = 0 /\ A = 0 ) -> ( A x. 1 ) = ( 0 x. 1 ) ) | 
						
							| 113 |  | ax-1cn |  |-  1 e. CC | 
						
							| 114 | 113 | mul02i |  |-  ( 0 x. 1 ) = 0 | 
						
							| 115 | 112 114 | eqtrdi |  |-  ( ( B = 0 /\ A = 0 ) -> ( A x. 1 ) = 0 ) | 
						
							| 116 |  | oveq1 |  |-  ( B = 0 -> ( B x. 1 ) = ( 0 x. 1 ) ) | 
						
							| 117 | 116 | adantr |  |-  ( ( B = 0 /\ A = 0 ) -> ( B x. 1 ) = ( 0 x. 1 ) ) | 
						
							| 118 | 117 114 | eqtrdi |  |-  ( ( B = 0 /\ A = 0 ) -> ( B x. 1 ) = 0 ) | 
						
							| 119 | 115 118 | oveq12d |  |-  ( ( B = 0 /\ A = 0 ) -> ( ( A x. 1 ) + ( B x. 1 ) ) = ( 0 + 0 ) ) | 
						
							| 120 | 119 23 | eqtrdi |  |-  ( ( B = 0 /\ A = 0 ) -> ( ( A x. 1 ) + ( B x. 1 ) ) = 0 ) | 
						
							| 121 |  | id |  |-  ( C = 0 -> C = 0 ) | 
						
							| 122 | 120 121 | eqeqan12d |  |-  ( ( ( B = 0 /\ A = 0 ) /\ C = 0 ) -> ( ( ( A x. 1 ) + ( B x. 1 ) ) = C <-> 0 = 0 ) ) | 
						
							| 123 | 122 | bibi1d |  |-  ( ( ( B = 0 /\ A = 0 ) /\ C = 0 ) -> ( ( ( ( A x. 1 ) + ( B x. 1 ) ) = C <-> 1 = 0 ) <-> ( 0 = 0 <-> 1 = 0 ) ) ) | 
						
							| 124 | 69 123 | mtbiri |  |-  ( ( ( B = 0 /\ A = 0 ) /\ C = 0 ) -> -. ( ( ( A x. 1 ) + ( B x. 1 ) ) = C <-> 1 = 0 ) ) | 
						
							| 125 |  | fveq1 |  |-  ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( p ` 1 ) = ( { <. 1 , 1 >. , <. 2 , 1 >. } ` 1 ) ) | 
						
							| 126 |  | fvpr1g |  |-  ( ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , 1 >. } ` 1 ) = 1 ) | 
						
							| 127 | 32 32 34 126 | mp3an |  |-  ( { <. 1 , 1 >. , <. 2 , 1 >. } ` 1 ) = 1 | 
						
							| 128 | 125 127 | eqtrdi |  |-  ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( p ` 1 ) = 1 ) | 
						
							| 129 | 128 | oveq2d |  |-  ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( A x. ( p ` 1 ) ) = ( A x. 1 ) ) | 
						
							| 130 |  | fveq1 |  |-  ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( p ` 2 ) = ( { <. 1 , 1 >. , <. 2 , 1 >. } ` 2 ) ) | 
						
							| 131 |  | fvpr2g |  |-  ( ( 2 e. _V /\ 1 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , 1 >. } ` 2 ) = 1 ) | 
						
							| 132 | 40 32 34 131 | mp3an |  |-  ( { <. 1 , 1 >. , <. 2 , 1 >. } ` 2 ) = 1 | 
						
							| 133 | 130 132 | eqtrdi |  |-  ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( p ` 2 ) = 1 ) | 
						
							| 134 | 133 | oveq2d |  |-  ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( B x. ( p ` 2 ) ) = ( B x. 1 ) ) | 
						
							| 135 | 129 134 | oveq12d |  |-  ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = ( ( A x. 1 ) + ( B x. 1 ) ) ) | 
						
							| 136 | 135 | eqeq1d |  |-  ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( ( A x. 1 ) + ( B x. 1 ) ) = C ) ) | 
						
							| 137 | 128 | eqeq1d |  |-  ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( ( p ` 1 ) = 0 <-> 1 = 0 ) ) | 
						
							| 138 | 136 137 | bibi12d |  |-  ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> ( ( ( A x. 1 ) + ( B x. 1 ) ) = C <-> 1 = 0 ) ) ) | 
						
							| 139 | 138 | notbid |  |-  ( p = { <. 1 , 1 >. , <. 2 , 1 >. } -> ( -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> -. ( ( ( A x. 1 ) + ( B x. 1 ) ) = C <-> 1 = 0 ) ) ) | 
						
							| 140 | 139 | rspcev |  |-  ( ( { <. 1 , 1 >. , <. 2 , 1 >. } e. P /\ -. ( ( ( A x. 1 ) + ( B x. 1 ) ) = C <-> 1 = 0 ) ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) | 
						
							| 141 | 110 124 140 | sylancr |  |-  ( ( ( B = 0 /\ A = 0 ) /\ C = 0 ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) | 
						
							| 142 | 141 | a1d |  |-  ( ( ( B = 0 /\ A = 0 ) /\ C = 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) | 
						
							| 143 | 142 | ex |  |-  ( ( B = 0 /\ A = 0 ) -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) | 
						
							| 144 | 105 107 143 | syl2anbr |  |-  ( ( -. -. B = 0 /\ -. A =/= 0 ) -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) | 
						
							| 145 | 104 144 | jaoi3 |  |-  ( ( -. B = 0 \/ -. A =/= 0 ) -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) | 
						
							| 146 | 145 | orcoms |  |-  ( ( -. A =/= 0 \/ -. B = 0 ) -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) | 
						
							| 147 | 55 146 | sylbi |  |-  ( -. ( A =/= 0 /\ B = 0 ) -> ( C = 0 -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) | 
						
							| 148 | 147 | com12 |  |-  ( C = 0 -> ( -. ( A =/= 0 /\ B = 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) | 
						
							| 149 | 54 148 | sylbir |  |-  ( -. -. C = 0 -> ( -. ( A =/= 0 /\ B = 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) ) | 
						
							| 150 | 149 | imp |  |-  ( ( -. -. C = 0 /\ -. ( A =/= 0 /\ B = 0 ) ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) | 
						
							| 151 | 53 150 | jaoi3 |  |-  ( ( -. C = 0 \/ -. ( A =/= 0 /\ B = 0 ) ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) | 
						
							| 152 | 151 | orcoms |  |-  ( ( -. ( A =/= 0 /\ B = 0 ) \/ -. C = 0 ) -> ( ( A e. RR /\ B e. RR /\ C e. RR ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) | 
						
							| 153 | 152 | com12 |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( -. ( A =/= 0 /\ B = 0 ) \/ -. C = 0 ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) | 
						
							| 154 | 3 153 | biimtrid |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. ( ( A =/= 0 /\ B = 0 ) /\ C = 0 ) -> E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) | 
						
							| 155 |  | rexnal |  |-  ( E. p e. P -. ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) <-> -. A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) | 
						
							| 156 | 154 155 | imbitrdi |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. ( ( A =/= 0 /\ B = 0 ) /\ C = 0 ) -> -. A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) ) ) | 
						
							| 157 | 156 | con4d |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) -> ( ( A =/= 0 /\ B = 0 ) /\ C = 0 ) ) ) | 
						
							| 158 |  | df-3an |  |-  ( ( A =/= 0 /\ B = 0 /\ C = 0 ) <-> ( ( A =/= 0 /\ B = 0 ) /\ C = 0 ) ) | 
						
							| 159 | 157 158 | imbitrrdi |  |-  ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A. p e. P ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 1 ) = 0 ) -> ( A =/= 0 /\ B = 0 /\ C = 0 ) ) ) |