| Step | Hyp | Ref | Expression | 
						
							| 1 |  | line2.i |  |-  I = { 1 , 2 } | 
						
							| 2 |  | line2.e |  |-  E = ( RR^ ` I ) | 
						
							| 3 |  | line2.p |  |-  P = ( RR ^m I ) | 
						
							| 4 |  | line2.l |  |-  L = ( LineM ` E ) | 
						
							| 5 |  | line2.g |  |-  G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } | 
						
							| 6 |  | line2.x |  |-  X = { <. 1 , 0 >. , <. 2 , ( C / B ) >. } | 
						
							| 7 |  | line2.y |  |-  Y = { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } | 
						
							| 8 |  | simp1 |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> A e. RR ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> A e. RR ) | 
						
							| 10 | 1 3 | rrx2pxel |  |-  ( p e. P -> ( p ` 1 ) e. RR ) | 
						
							| 11 | 10 | adantl |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( p ` 1 ) e. RR ) | 
						
							| 12 | 9 11 | remulcld |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( A x. ( p ` 1 ) ) e. CC ) | 
						
							| 14 |  | simpl2l |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> B e. RR ) | 
						
							| 15 | 1 3 | rrx2pyel |  |-  ( p e. P -> ( p ` 2 ) e. RR ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( p ` 2 ) e. RR ) | 
						
							| 17 | 14 16 | remulcld |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. RR ) | 
						
							| 18 | 17 | recnd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( B x. ( p ` 2 ) ) e. CC ) | 
						
							| 19 |  | simpl |  |-  ( ( B e. RR /\ B =/= 0 ) -> B e. RR ) | 
						
							| 20 | 19 | recnd |  |-  ( ( B e. RR /\ B =/= 0 ) -> B e. CC ) | 
						
							| 21 | 20 | 3ad2ant2 |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B e. CC ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> B e. CC ) | 
						
							| 23 |  | simp2r |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B =/= 0 ) | 
						
							| 24 | 23 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> B =/= 0 ) | 
						
							| 25 | 13 18 22 24 | divdird |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) / B ) = ( ( ( A x. ( p ` 1 ) ) / B ) + ( ( B x. ( p ` 2 ) ) / B ) ) ) | 
						
							| 26 | 15 | recnd |  |-  ( p e. P -> ( p ` 2 ) e. CC ) | 
						
							| 27 | 26 | adantl |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( p ` 2 ) e. CC ) | 
						
							| 28 | 27 22 24 | divcan3d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( B x. ( p ` 2 ) ) / B ) = ( p ` 2 ) ) | 
						
							| 29 | 28 | oveq2d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) / B ) + ( ( B x. ( p ` 2 ) ) / B ) ) = ( ( ( A x. ( p ` 1 ) ) / B ) + ( p ` 2 ) ) ) | 
						
							| 30 | 25 29 | eqtrd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) / B ) = ( ( ( A x. ( p ` 1 ) ) / B ) + ( p ` 2 ) ) ) | 
						
							| 31 | 30 | eqeq1d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) / B ) = ( C / B ) <-> ( ( ( A x. ( p ` 1 ) ) / B ) + ( p ` 2 ) ) = ( C / B ) ) ) | 
						
							| 32 | 12 14 24 | redivcld |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) / B ) e. RR ) | 
						
							| 33 | 32 | recnd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) / B ) e. CC ) | 
						
							| 34 |  | simp3 |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> C e. RR ) | 
						
							| 35 | 19 | 3ad2ant2 |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> B e. RR ) | 
						
							| 36 | 34 35 23 | redivcld |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( C / B ) e. RR ) | 
						
							| 37 | 36 | recnd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( C / B ) e. CC ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( C / B ) e. CC ) | 
						
							| 39 | 33 27 38 | addrsub |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) / B ) + ( p ` 2 ) ) = ( C / B ) <-> ( p ` 2 ) = ( ( C / B ) - ( ( A x. ( p ` 1 ) ) / B ) ) ) ) | 
						
							| 40 |  | simpl3 |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> C e. RR ) | 
						
							| 41 | 40 14 24 | redivcld |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( C / B ) e. RR ) | 
						
							| 42 | 41 | recnd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( C / B ) e. CC ) | 
						
							| 43 | 33 42 | negsubdi2d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u ( ( ( A x. ( p ` 1 ) ) / B ) - ( C / B ) ) = ( ( C / B ) - ( ( A x. ( p ` 1 ) ) / B ) ) ) | 
						
							| 44 | 33 42 | negsubdid |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u ( ( ( A x. ( p ` 1 ) ) / B ) - ( C / B ) ) = ( -u ( ( A x. ( p ` 1 ) ) / B ) + ( C / B ) ) ) | 
						
							| 45 | 43 44 | eqtr3d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( C / B ) - ( ( A x. ( p ` 1 ) ) / B ) ) = ( -u ( ( A x. ( p ` 1 ) ) / B ) + ( C / B ) ) ) | 
						
							| 46 | 45 | eqeq2d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 2 ) = ( ( C / B ) - ( ( A x. ( p ` 1 ) ) / B ) ) <-> ( p ` 2 ) = ( -u ( ( A x. ( p ` 1 ) ) / B ) + ( C / B ) ) ) ) | 
						
							| 47 | 31 39 46 | 3bitrd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) / B ) = ( C / B ) <-> ( p ` 2 ) = ( -u ( ( A x. ( p ` 1 ) ) / B ) + ( C / B ) ) ) ) | 
						
							| 48 | 12 17 | readdcld |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) e. RR ) | 
						
							| 49 | 48 | recnd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) e. CC ) | 
						
							| 50 | 34 | recnd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> C e. CC ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> C e. CC ) | 
						
							| 52 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 53 | 52 | anim1i |  |-  ( ( B e. RR /\ B =/= 0 ) -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 54 | 53 | 3ad2ant2 |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 56 |  | div11 |  |-  ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) / B ) = ( C / B ) <-> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C ) ) | 
						
							| 57 | 49 51 55 56 | syl3anc |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) / B ) = ( C / B ) <-> ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C ) ) | 
						
							| 58 | 13 22 24 | divnegd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u ( ( A x. ( p ` 1 ) ) / B ) = ( -u ( A x. ( p ` 1 ) ) / B ) ) | 
						
							| 59 | 8 | recnd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> A e. CC ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> A e. CC ) | 
						
							| 61 | 10 | recnd |  |-  ( p e. P -> ( p ` 1 ) e. CC ) | 
						
							| 62 | 61 | adantl |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( p ` 1 ) e. CC ) | 
						
							| 63 | 60 62 | mulneg1d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( -u A x. ( p ` 1 ) ) = -u ( A x. ( p ` 1 ) ) ) | 
						
							| 64 | 63 | eqcomd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u ( A x. ( p ` 1 ) ) = ( -u A x. ( p ` 1 ) ) ) | 
						
							| 65 | 64 | oveq1d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( -u ( A x. ( p ` 1 ) ) / B ) = ( ( -u A x. ( p ` 1 ) ) / B ) ) | 
						
							| 66 | 58 65 | eqtrd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u ( ( A x. ( p ` 1 ) ) / B ) = ( ( -u A x. ( p ` 1 ) ) / B ) ) | 
						
							| 67 |  | renegcl |  |-  ( A e. RR -> -u A e. RR ) | 
						
							| 68 | 67 | recnd |  |-  ( A e. RR -> -u A e. CC ) | 
						
							| 69 | 68 | 3ad2ant1 |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> -u A e. CC ) | 
						
							| 70 | 69 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u A e. CC ) | 
						
							| 71 |  | div23 |  |-  ( ( -u A e. CC /\ ( p ` 1 ) e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( -u A x. ( p ` 1 ) ) / B ) = ( ( -u A / B ) x. ( p ` 1 ) ) ) | 
						
							| 72 | 70 62 55 71 | syl3anc |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( -u A x. ( p ` 1 ) ) / B ) = ( ( -u A / B ) x. ( p ` 1 ) ) ) | 
						
							| 73 | 6 | fveq1i |  |-  ( X ` 1 ) = ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 1 ) | 
						
							| 74 |  | 1ex |  |-  1 e. _V | 
						
							| 75 |  | c0ex |  |-  0 e. _V | 
						
							| 76 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 77 | 74 75 76 | 3pm3.2i |  |-  ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) | 
						
							| 78 |  | fvpr1g |  |-  ( ( 1 e. _V /\ 0 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 1 ) = 0 ) | 
						
							| 79 | 77 78 | mp1i |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 1 ) = 0 ) | 
						
							| 80 | 73 79 | eqtrid |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( X ` 1 ) = 0 ) | 
						
							| 81 | 80 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( X ` 1 ) = 0 ) | 
						
							| 82 | 81 | oveq2d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 1 ) - ( X ` 1 ) ) = ( ( p ` 1 ) - 0 ) ) | 
						
							| 83 | 62 | subid1d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 1 ) - 0 ) = ( p ` 1 ) ) | 
						
							| 84 | 82 83 | eqtr2d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( p ` 1 ) = ( ( p ` 1 ) - ( X ` 1 ) ) ) | 
						
							| 85 | 84 | oveq2d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( -u A / B ) x. ( p ` 1 ) ) = ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) ) | 
						
							| 86 | 66 72 85 | 3eqtrd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> -u ( ( A x. ( p ` 1 ) ) / B ) = ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) ) | 
						
							| 87 | 86 | oveq1d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( -u ( ( A x. ( p ` 1 ) ) / B ) + ( C / B ) ) = ( ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) | 
						
							| 88 | 87 | eqeq2d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 2 ) = ( -u ( ( A x. ( p ` 1 ) ) / B ) + ( C / B ) ) <-> ( p ` 2 ) = ( ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) ) | 
						
							| 89 | 47 57 88 | 3bitr3d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) ) | 
						
							| 90 |  | recn |  |-  ( C e. RR -> C e. CC ) | 
						
							| 91 | 90 | adantl |  |-  ( ( A e. RR /\ C e. RR ) -> C e. CC ) | 
						
							| 92 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 93 | 92 | adantr |  |-  ( ( A e. RR /\ C e. RR ) -> A e. CC ) | 
						
							| 94 |  | sub32 |  |-  ( ( C e. CC /\ A e. CC /\ C e. CC ) -> ( ( C - A ) - C ) = ( ( C - C ) - A ) ) | 
						
							| 95 |  | subid |  |-  ( C e. CC -> ( C - C ) = 0 ) | 
						
							| 96 | 95 | 3ad2ant1 |  |-  ( ( C e. CC /\ A e. CC /\ C e. CC ) -> ( C - C ) = 0 ) | 
						
							| 97 | 96 | oveq1d |  |-  ( ( C e. CC /\ A e. CC /\ C e. CC ) -> ( ( C - C ) - A ) = ( 0 - A ) ) | 
						
							| 98 |  | df-neg |  |-  -u A = ( 0 - A ) | 
						
							| 99 | 97 98 | eqtr4di |  |-  ( ( C e. CC /\ A e. CC /\ C e. CC ) -> ( ( C - C ) - A ) = -u A ) | 
						
							| 100 | 94 99 | eqtr2d |  |-  ( ( C e. CC /\ A e. CC /\ C e. CC ) -> -u A = ( ( C - A ) - C ) ) | 
						
							| 101 | 91 93 91 100 | syl3anc |  |-  ( ( A e. RR /\ C e. RR ) -> -u A = ( ( C - A ) - C ) ) | 
						
							| 102 | 101 | 3adant2 |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> -u A = ( ( C - A ) - C ) ) | 
						
							| 103 | 102 | oveq1d |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( -u A / B ) = ( ( ( C - A ) - C ) / B ) ) | 
						
							| 104 | 103 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( -u A / B ) = ( ( ( C - A ) - C ) / B ) ) | 
						
							| 105 | 104 | oveq1d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) = ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) ) | 
						
							| 106 | 105 | oveq1d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) = ( ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) | 
						
							| 107 | 106 | eqeq2d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 2 ) = ( ( ( -u A / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) <-> ( p ` 2 ) = ( ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) ) | 
						
							| 108 | 89 107 | bitrd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) ) | 
						
							| 109 | 7 | fveq1i |  |-  ( Y ` 2 ) = ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 2 ) | 
						
							| 110 |  | 2ex |  |-  2 e. _V | 
						
							| 111 | 110 | a1i |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> 2 e. _V ) | 
						
							| 112 |  | resubcl |  |-  ( ( C e. RR /\ A e. RR ) -> ( C - A ) e. RR ) | 
						
							| 113 | 112 | ancoms |  |-  ( ( A e. RR /\ C e. RR ) -> ( C - A ) e. RR ) | 
						
							| 114 | 113 | 3adant2 |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( C - A ) e. RR ) | 
						
							| 115 | 114 35 23 | redivcld |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( C - A ) / B ) e. RR ) | 
						
							| 116 | 76 | a1i |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> 1 =/= 2 ) | 
						
							| 117 | 111 115 116 | 3jca |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( 2 e. _V /\ ( ( C - A ) / B ) e. RR /\ 1 =/= 2 ) ) | 
						
							| 118 | 117 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( 2 e. _V /\ ( ( C - A ) / B ) e. RR /\ 1 =/= 2 ) ) | 
						
							| 119 |  | fvpr2g |  |-  ( ( 2 e. _V /\ ( ( C - A ) / B ) e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 2 ) = ( ( C - A ) / B ) ) | 
						
							| 120 | 118 119 | syl |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 2 ) = ( ( C - A ) / B ) ) | 
						
							| 121 | 109 120 | eqtrid |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( Y ` 2 ) = ( ( C - A ) / B ) ) | 
						
							| 122 | 6 | fveq1i |  |-  ( X ` 2 ) = ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 2 ) | 
						
							| 123 |  | fvpr2g |  |-  ( ( 2 e. _V /\ ( C / B ) e. RR /\ 1 =/= 2 ) -> ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 2 ) = ( C / B ) ) | 
						
							| 124 | 110 36 116 123 | mp3an2i |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 2 ) = ( C / B ) ) | 
						
							| 125 | 122 124 | eqtrid |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( X ` 2 ) = ( C / B ) ) | 
						
							| 126 | 125 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( X ` 2 ) = ( C / B ) ) | 
						
							| 127 | 121 126 | oveq12d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) = ( ( ( C - A ) / B ) - ( C / B ) ) ) | 
						
							| 128 | 34 8 | resubcld |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( C - A ) e. RR ) | 
						
							| 129 | 128 | recnd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( C - A ) e. CC ) | 
						
							| 130 |  | divsubdir |  |-  ( ( ( C - A ) e. CC /\ C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( ( ( C - A ) - C ) / B ) = ( ( ( C - A ) / B ) - ( C / B ) ) ) | 
						
							| 131 | 129 50 54 130 | syl3anc |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( C - A ) - C ) / B ) = ( ( ( C - A ) / B ) - ( C / B ) ) ) | 
						
							| 132 | 131 | eqcomd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( C - A ) / B ) - ( C / B ) ) = ( ( ( C - A ) - C ) / B ) ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( C - A ) / B ) - ( C / B ) ) = ( ( ( C - A ) - C ) / B ) ) | 
						
							| 134 | 127 133 | eqtr2d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( C - A ) - C ) / B ) = ( ( Y ` 2 ) - ( X ` 2 ) ) ) | 
						
							| 135 | 134 | oveq1d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) ) | 
						
							| 136 | 135 | oveq1d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) | 
						
							| 137 | 136 | eqeq2d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 2 ) = ( ( ( ( ( C - A ) - C ) / B ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) <-> ( p ` 2 ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) ) | 
						
							| 138 | 7 | fveq1i |  |-  ( Y ` 1 ) = ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 1 ) | 
						
							| 139 | 74 74 | fvpr1 |  |-  ( 1 =/= 2 -> ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 1 ) = 1 ) | 
						
							| 140 | 76 139 | ax-mp |  |-  ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 1 ) = 1 | 
						
							| 141 | 138 140 | eqtri |  |-  ( Y ` 1 ) = 1 | 
						
							| 142 | 74 75 | fvpr1 |  |-  ( 1 =/= 2 -> ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 1 ) = 0 ) | 
						
							| 143 | 76 142 | ax-mp |  |-  ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 1 ) = 0 | 
						
							| 144 | 73 143 | eqtri |  |-  ( X ` 1 ) = 0 | 
						
							| 145 | 141 144 | oveq12i |  |-  ( ( Y ` 1 ) - ( X ` 1 ) ) = ( 1 - 0 ) | 
						
							| 146 |  | 1m0e1 |  |-  ( 1 - 0 ) = 1 | 
						
							| 147 | 145 146 | eqtri |  |-  ( ( Y ` 1 ) - ( X ` 1 ) ) = 1 | 
						
							| 148 | 147 | a1i |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( Y ` 1 ) - ( X ` 1 ) ) = 1 ) | 
						
							| 149 | 148 | oveq2d |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) / 1 ) ) | 
						
							| 150 | 110 115 116 119 | mp3an2i |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 2 ) = ( ( C - A ) / B ) ) | 
						
							| 151 | 109 150 | eqtrid |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( Y ` 2 ) = ( ( C - A ) / B ) ) | 
						
							| 152 | 115 | recnd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( C - A ) / B ) e. CC ) | 
						
							| 153 | 151 152 | eqeltrd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( Y ` 2 ) e. CC ) | 
						
							| 154 | 125 37 | eqeltrd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( X ` 2 ) e. CC ) | 
						
							| 155 | 153 154 | subcld |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( Y ` 2 ) - ( X ` 2 ) ) e. CC ) | 
						
							| 156 | 155 | div1d |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) / 1 ) = ( ( Y ` 2 ) - ( X ` 2 ) ) ) | 
						
							| 157 | 149 156 | eqtrd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) = ( ( Y ` 2 ) - ( X ` 2 ) ) ) | 
						
							| 158 | 157 | oveq1d |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) ) | 
						
							| 159 | 158 125 | oveq12d |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) | 
						
							| 160 | 159 | adantr |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) ) | 
						
							| 161 | 160 | eqcomd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) = ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) ) | 
						
							| 162 | 161 | eqeq2d |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( p ` 2 ) = ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( C / B ) ) <-> ( p ` 2 ) = ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) ) ) | 
						
							| 163 | 108 137 162 | 3bitrd |  |-  ( ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) /\ p e. P ) -> ( ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C <-> ( p ` 2 ) = ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) ) ) | 
						
							| 164 | 163 | rabbidva |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } = { p e. P | ( p ` 2 ) = ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) } ) | 
						
							| 165 | 5 | a1i |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> G = { p e. P | ( ( A x. ( p ` 1 ) ) + ( B x. ( p ` 2 ) ) ) = C } ) | 
						
							| 166 | 74 110 | pm3.2i |  |-  ( 1 e. _V /\ 2 e. _V ) | 
						
							| 167 | 36 75 | jctil |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( 0 e. _V /\ ( C / B ) e. RR ) ) | 
						
							| 168 |  | fprg |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 0 e. _V /\ ( C / B ) e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 0 >. , <. 2 , ( C / B ) >. } : { 1 , 2 } --> { 0 , ( C / B ) } ) | 
						
							| 169 | 166 167 116 168 | mp3an2i |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { <. 1 , 0 >. , <. 2 , ( C / B ) >. } : { 1 , 2 } --> { 0 , ( C / B ) } ) | 
						
							| 170 |  | 0red |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> 0 e. RR ) | 
						
							| 171 | 170 36 | prssd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { 0 , ( C / B ) } C_ RR ) | 
						
							| 172 | 169 171 | fssd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { <. 1 , 0 >. , <. 2 , ( C / B ) >. } : { 1 , 2 } --> RR ) | 
						
							| 173 | 6 | feq1i |  |-  ( X : { 1 , 2 } --> RR <-> { <. 1 , 0 >. , <. 2 , ( C / B ) >. } : { 1 , 2 } --> RR ) | 
						
							| 174 | 172 173 | sylibr |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> X : { 1 , 2 } --> RR ) | 
						
							| 175 |  | reex |  |-  RR e. _V | 
						
							| 176 |  | prex |  |-  { 1 , 2 } e. _V | 
						
							| 177 | 175 176 | elmap |  |-  ( X e. ( RR ^m { 1 , 2 } ) <-> X : { 1 , 2 } --> RR ) | 
						
							| 178 | 174 177 | sylibr |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> X e. ( RR ^m { 1 , 2 } ) ) | 
						
							| 179 | 1 | oveq2i |  |-  ( RR ^m I ) = ( RR ^m { 1 , 2 } ) | 
						
							| 180 | 3 179 | eqtri |  |-  P = ( RR ^m { 1 , 2 } ) | 
						
							| 181 | 178 180 | eleqtrrdi |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> X e. P ) | 
						
							| 182 | 115 74 | jctil |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( 1 e. _V /\ ( ( C - A ) / B ) e. RR ) ) | 
						
							| 183 |  | fprg |  |-  ( ( ( 1 e. _V /\ 2 e. _V ) /\ ( 1 e. _V /\ ( ( C - A ) / B ) e. RR ) /\ 1 =/= 2 ) -> { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } : { 1 , 2 } --> { 1 , ( ( C - A ) / B ) } ) | 
						
							| 184 | 166 182 116 183 | mp3an2i |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } : { 1 , 2 } --> { 1 , ( ( C - A ) / B ) } ) | 
						
							| 185 |  | 1red |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> 1 e. RR ) | 
						
							| 186 | 185 115 | prssd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { 1 , ( ( C - A ) / B ) } C_ RR ) | 
						
							| 187 | 184 186 | fssd |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } : { 1 , 2 } --> RR ) | 
						
							| 188 | 7 | feq1i |  |-  ( Y : { 1 , 2 } --> RR <-> { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } : { 1 , 2 } --> RR ) | 
						
							| 189 | 187 188 | sylibr |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> Y : { 1 , 2 } --> RR ) | 
						
							| 190 | 175 176 | elmap |  |-  ( Y e. ( RR ^m { 1 , 2 } ) <-> Y : { 1 , 2 } --> RR ) | 
						
							| 191 | 189 190 | sylibr |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> Y e. ( RR ^m { 1 , 2 } ) ) | 
						
							| 192 | 191 180 | eleqtrrdi |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> Y e. P ) | 
						
							| 193 |  | 0ne1 |  |-  0 =/= 1 | 
						
							| 194 | 77 78 | ax-mp |  |-  ( { <. 1 , 0 >. , <. 2 , ( C / B ) >. } ` 1 ) = 0 | 
						
							| 195 | 73 194 | eqtri |  |-  ( X ` 1 ) = 0 | 
						
							| 196 | 74 74 76 | 3pm3.2i |  |-  ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) | 
						
							| 197 |  | fvpr1g |  |-  ( ( 1 e. _V /\ 1 e. _V /\ 1 =/= 2 ) -> ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 1 ) = 1 ) | 
						
							| 198 | 196 197 | ax-mp |  |-  ( { <. 1 , 1 >. , <. 2 , ( ( C - A ) / B ) >. } ` 1 ) = 1 | 
						
							| 199 | 138 198 | eqtri |  |-  ( Y ` 1 ) = 1 | 
						
							| 200 | 195 199 | neeq12i |  |-  ( ( X ` 1 ) =/= ( Y ` 1 ) <-> 0 =/= 1 ) | 
						
							| 201 | 193 200 | mpbir |  |-  ( X ` 1 ) =/= ( Y ` 1 ) | 
						
							| 202 | 201 | a1i |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( X ` 1 ) =/= ( Y ` 1 ) ) | 
						
							| 203 |  | eqid |  |-  ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) = ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) | 
						
							| 204 | 1 2 3 4 203 | rrx2linesl |  |-  ( ( X e. P /\ Y e. P /\ ( X ` 1 ) =/= ( Y ` 1 ) ) -> ( X L Y ) = { p e. P | ( p ` 2 ) = ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) } ) | 
						
							| 205 | 181 192 202 204 | syl3anc |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> ( X L Y ) = { p e. P | ( p ` 2 ) = ( ( ( ( ( Y ` 2 ) - ( X ` 2 ) ) / ( ( Y ` 1 ) - ( X ` 1 ) ) ) x. ( ( p ` 1 ) - ( X ` 1 ) ) ) + ( X ` 2 ) ) } ) | 
						
							| 206 | 164 165 205 | 3eqtr4d |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) /\ C e. RR ) -> G = ( X L Y ) ) |