Metamath Proof Explorer


Theorem line2

Description: Example for a line G passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023)

Ref Expression
Hypotheses line2.i I=12
line2.e E=msup
line2.p P=I
line2.l L=LineME
line2.g G=pP|Ap1+Bp2=C
line2.x X=102CB
line2.y Y=112CAB
Assertion line2 ABB0CG=XLY

Proof

Step Hyp Ref Expression
1 line2.i I=12
2 line2.e E=msup
3 line2.p P=I
4 line2.l L=LineME
5 line2.g G=pP|Ap1+Bp2=C
6 line2.x X=102CB
7 line2.y Y=112CAB
8 simp1 ABB0CA
9 8 adantr ABB0CpPA
10 1 3 rrx2pxel pPp1
11 10 adantl ABB0CpPp1
12 9 11 remulcld ABB0CpPAp1
13 12 recnd ABB0CpPAp1
14 simpl2l ABB0CpPB
15 1 3 rrx2pyel pPp2
16 15 adantl ABB0CpPp2
17 14 16 remulcld ABB0CpPBp2
18 17 recnd ABB0CpPBp2
19 simpl BB0B
20 19 recnd BB0B
21 20 3ad2ant2 ABB0CB
22 21 adantr ABB0CpPB
23 simp2r ABB0CB0
24 23 adantr ABB0CpPB0
25 13 18 22 24 divdird ABB0CpPAp1+Bp2B=Ap1B+Bp2B
26 15 recnd pPp2
27 26 adantl ABB0CpPp2
28 27 22 24 divcan3d ABB0CpPBp2B=p2
29 28 oveq2d ABB0CpPAp1B+Bp2B=Ap1B+p2
30 25 29 eqtrd ABB0CpPAp1+Bp2B=Ap1B+p2
31 30 eqeq1d ABB0CpPAp1+Bp2B=CBAp1B+p2=CB
32 12 14 24 redivcld ABB0CpPAp1B
33 32 recnd ABB0CpPAp1B
34 simp3 ABB0CC
35 19 3ad2ant2 ABB0CB
36 34 35 23 redivcld ABB0CCB
37 36 recnd ABB0CCB
38 37 adantr ABB0CpPCB
39 33 27 38 addrsub ABB0CpPAp1B+p2=CBp2=CBAp1B
40 simpl3 ABB0CpPC
41 40 14 24 redivcld ABB0CpPCB
42 41 recnd ABB0CpPCB
43 33 42 negsubdi2d ABB0CpPAp1BCB=CBAp1B
44 33 42 negsubdid ABB0CpPAp1BCB=-Ap1B+CB
45 43 44 eqtr3d ABB0CpPCBAp1B=-Ap1B+CB
46 45 eqeq2d ABB0CpPp2=CBAp1Bp2=-Ap1B+CB
47 31 39 46 3bitrd ABB0CpPAp1+Bp2B=CBp2=-Ap1B+CB
48 12 17 readdcld ABB0CpPAp1+Bp2
49 48 recnd ABB0CpPAp1+Bp2
50 34 recnd ABB0CC
51 50 adantr ABB0CpPC
52 recn BB
53 52 anim1i BB0BB0
54 53 3ad2ant2 ABB0CBB0
55 54 adantr ABB0CpPBB0
56 div11 Ap1+Bp2CBB0Ap1+Bp2B=CBAp1+Bp2=C
57 49 51 55 56 syl3anc ABB0CpPAp1+Bp2B=CBAp1+Bp2=C
58 13 22 24 divnegd ABB0CpPAp1B=Ap1B
59 8 recnd ABB0CA
60 59 adantr ABB0CpPA
61 10 recnd pPp1
62 61 adantl ABB0CpPp1
63 60 62 mulneg1d ABB0CpPAp1=Ap1
64 63 eqcomd ABB0CpPAp1=Ap1
65 64 oveq1d ABB0CpPAp1B=Ap1B
66 58 65 eqtrd ABB0CpPAp1B=Ap1B
67 renegcl AA
68 67 recnd AA
69 68 3ad2ant1 ABB0CA
70 69 adantr ABB0CpPA
71 div23 Ap1BB0Ap1B=ABp1
72 70 62 55 71 syl3anc ABB0CpPAp1B=ABp1
73 6 fveq1i X1=102CB1
74 1ex 1V
75 c0ex 0V
76 1ne2 12
77 74 75 76 3pm3.2i 1V0V12
78 fvpr1g 1V0V12102CB1=0
79 77 78 mp1i ABB0C102CB1=0
80 73 79 eqtrid ABB0CX1=0
81 80 adantr ABB0CpPX1=0
82 81 oveq2d ABB0CpPp1X1=p10
83 62 subid1d ABB0CpPp10=p1
84 82 83 eqtr2d ABB0CpPp1=p1X1
85 84 oveq2d ABB0CpPABp1=ABp1X1
86 66 72 85 3eqtrd ABB0CpPAp1B=ABp1X1
87 86 oveq1d ABB0CpP-Ap1B+CB=ABp1X1+CB
88 87 eqeq2d ABB0CpPp2=-Ap1B+CBp2=ABp1X1+CB
89 47 57 88 3bitr3d ABB0CpPAp1+Bp2=Cp2=ABp1X1+CB
90 recn CC
91 90 adantl ACC
92 recn AA
93 92 adantr ACA
94 sub32 CACC-A-C=C-C-A
95 subid CCC=0
96 95 3ad2ant1 CACCC=0
97 96 oveq1d CACC-C-A=0A
98 df-neg A=0A
99 97 98 eqtr4di CACC-C-A=A
100 94 99 eqtr2d CACA=C-A-C
101 91 93 91 100 syl3anc ACA=C-A-C
102 101 3adant2 ABB0CA=C-A-C
103 102 oveq1d ABB0CAB=C-A-CB
104 103 adantr ABB0CpPAB=C-A-CB
105 104 oveq1d ABB0CpPABp1X1=C-A-CBp1X1
106 105 oveq1d ABB0CpPABp1X1+CB=C-A-CBp1X1+CB
107 106 eqeq2d ABB0CpPp2=ABp1X1+CBp2=C-A-CBp1X1+CB
108 89 107 bitrd ABB0CpPAp1+Bp2=Cp2=C-A-CBp1X1+CB
109 7 fveq1i Y2=112CAB2
110 2ex 2V
111 110 a1i ABB0C2V
112 resubcl CACA
113 112 ancoms ACCA
114 113 3adant2 ABB0CCA
115 114 35 23 redivcld ABB0CCAB
116 76 a1i ABB0C12
117 111 115 116 3jca ABB0C2VCAB12
118 117 adantr ABB0CpP2VCAB12
119 fvpr2g 2VCAB12112CAB2=CAB
120 118 119 syl ABB0CpP112CAB2=CAB
121 109 120 eqtrid ABB0CpPY2=CAB
122 6 fveq1i X2=102CB2
123 fvpr2g 2VCB12102CB2=CB
124 110 36 116 123 mp3an2i ABB0C102CB2=CB
125 122 124 eqtrid ABB0CX2=CB
126 125 adantr ABB0CpPX2=CB
127 121 126 oveq12d ABB0CpPY2X2=CABCB
128 34 8 resubcld ABB0CCA
129 128 recnd ABB0CCA
130 divsubdir CACBB0C-A-CB=CABCB
131 129 50 54 130 syl3anc ABB0CC-A-CB=CABCB
132 131 eqcomd ABB0CCABCB=C-A-CB
133 132 adantr ABB0CpPCABCB=C-A-CB
134 127 133 eqtr2d ABB0CpPC-A-CB=Y2X2
135 134 oveq1d ABB0CpPC-A-CBp1X1=Y2X2p1X1
136 135 oveq1d ABB0CpPC-A-CBp1X1+CB=Y2X2p1X1+CB
137 136 eqeq2d ABB0CpPp2=C-A-CBp1X1+CBp2=Y2X2p1X1+CB
138 7 fveq1i Y1=112CAB1
139 74 74 fvpr1 12112CAB1=1
140 76 139 ax-mp 112CAB1=1
141 138 140 eqtri Y1=1
142 74 75 fvpr1 12102CB1=0
143 76 142 ax-mp 102CB1=0
144 73 143 eqtri X1=0
145 141 144 oveq12i Y1X1=10
146 1m0e1 10=1
147 145 146 eqtri Y1X1=1
148 147 a1i ABB0CY1X1=1
149 148 oveq2d ABB0CY2X2Y1X1=Y2X21
150 110 115 116 119 mp3an2i ABB0C112CAB2=CAB
151 109 150 eqtrid ABB0CY2=CAB
152 115 recnd ABB0CCAB
153 151 152 eqeltrd ABB0CY2
154 125 37 eqeltrd ABB0CX2
155 153 154 subcld ABB0CY2X2
156 155 div1d ABB0CY2X21=Y2X2
157 149 156 eqtrd ABB0CY2X2Y1X1=Y2X2
158 157 oveq1d ABB0CY2X2Y1X1p1X1=Y2X2p1X1
159 158 125 oveq12d ABB0CY2X2Y1X1p1X1+X2=Y2X2p1X1+CB
160 159 adantr ABB0CpPY2X2Y1X1p1X1+X2=Y2X2p1X1+CB
161 160 eqcomd ABB0CpPY2X2p1X1+CB=Y2X2Y1X1p1X1+X2
162 161 eqeq2d ABB0CpPp2=Y2X2p1X1+CBp2=Y2X2Y1X1p1X1+X2
163 108 137 162 3bitrd ABB0CpPAp1+Bp2=Cp2=Y2X2Y1X1p1X1+X2
164 163 rabbidva ABB0CpP|Ap1+Bp2=C=pP|p2=Y2X2Y1X1p1X1+X2
165 5 a1i ABB0CG=pP|Ap1+Bp2=C
166 74 110 pm3.2i 1V2V
167 36 75 jctil ABB0C0VCB
168 fprg 1V2V0VCB12102CB:120CB
169 166 167 116 168 mp3an2i ABB0C102CB:120CB
170 0red ABB0C0
171 170 36 prssd ABB0C0CB
172 169 171 fssd ABB0C102CB:12
173 6 feq1i X:12102CB:12
174 172 173 sylibr ABB0CX:12
175 reex V
176 prex 12V
177 175 176 elmap X12X:12
178 174 177 sylibr ABB0CX12
179 1 oveq2i I=12
180 3 179 eqtri P=12
181 178 180 eleqtrrdi ABB0CXP
182 115 74 jctil ABB0C1VCAB
183 fprg 1V2V1VCAB12112CAB:121CAB
184 166 182 116 183 mp3an2i ABB0C112CAB:121CAB
185 1red ABB0C1
186 185 115 prssd ABB0C1CAB
187 184 186 fssd ABB0C112CAB:12
188 7 feq1i Y:12112CAB:12
189 187 188 sylibr ABB0CY:12
190 175 176 elmap Y12Y:12
191 189 190 sylibr ABB0CY12
192 191 180 eleqtrrdi ABB0CYP
193 0ne1 01
194 77 78 ax-mp 102CB1=0
195 73 194 eqtri X1=0
196 74 74 76 3pm3.2i 1V1V12
197 fvpr1g 1V1V12112CAB1=1
198 196 197 ax-mp 112CAB1=1
199 138 198 eqtri Y1=1
200 195 199 neeq12i X1Y101
201 193 200 mpbir X1Y1
202 201 a1i ABB0CX1Y1
203 eqid Y2X2Y1X1=Y2X2Y1X1
204 1 2 3 4 203 rrx2linesl XPYPX1Y1XLY=pP|p2=Y2X2Y1X1p1X1+X2
205 181 192 202 204 syl3anc ABB0CXLY=pP|p2=Y2X2Y1X1p1X1+X2
206 164 165 205 3eqtr4d ABB0CG=XLY