Metamath Proof Explorer


Theorem line2

Description: Example for a line G passing through two different points in "standard form". (Contributed by AV, 3-Feb-2023)

Ref Expression
Hypotheses line2.i I = 1 2
line2.e E = I
line2.p P = I
line2.l L = Line M E
line2.g G = p P | A p 1 + B p 2 = C
line2.x X = 1 0 2 C B
line2.y Y = 1 1 2 C A B
Assertion line2 A B B 0 C G = X L Y

Proof

Step Hyp Ref Expression
1 line2.i I = 1 2
2 line2.e E = I
3 line2.p P = I
4 line2.l L = Line M E
5 line2.g G = p P | A p 1 + B p 2 = C
6 line2.x X = 1 0 2 C B
7 line2.y Y = 1 1 2 C A B
8 simp1 A B B 0 C A
9 8 adantr A B B 0 C p P A
10 1 3 rrx2pxel p P p 1
11 10 adantl A B B 0 C p P p 1
12 9 11 remulcld A B B 0 C p P A p 1
13 12 recnd A B B 0 C p P A p 1
14 simpl2l A B B 0 C p P B
15 1 3 rrx2pyel p P p 2
16 15 adantl A B B 0 C p P p 2
17 14 16 remulcld A B B 0 C p P B p 2
18 17 recnd A B B 0 C p P B p 2
19 simpl B B 0 B
20 19 recnd B B 0 B
21 20 3ad2ant2 A B B 0 C B
22 21 adantr A B B 0 C p P B
23 simp2r A B B 0 C B 0
24 23 adantr A B B 0 C p P B 0
25 13 18 22 24 divdird A B B 0 C p P A p 1 + B p 2 B = A p 1 B + B p 2 B
26 15 recnd p P p 2
27 26 adantl A B B 0 C p P p 2
28 27 22 24 divcan3d A B B 0 C p P B p 2 B = p 2
29 28 oveq2d A B B 0 C p P A p 1 B + B p 2 B = A p 1 B + p 2
30 25 29 eqtrd A B B 0 C p P A p 1 + B p 2 B = A p 1 B + p 2
31 30 eqeq1d A B B 0 C p P A p 1 + B p 2 B = C B A p 1 B + p 2 = C B
32 12 14 24 redivcld A B B 0 C p P A p 1 B
33 32 recnd A B B 0 C p P A p 1 B
34 simp3 A B B 0 C C
35 19 3ad2ant2 A B B 0 C B
36 34 35 23 redivcld A B B 0 C C B
37 36 recnd A B B 0 C C B
38 37 adantr A B B 0 C p P C B
39 33 27 38 addrsub A B B 0 C p P A p 1 B + p 2 = C B p 2 = C B A p 1 B
40 simpl3 A B B 0 C p P C
41 40 14 24 redivcld A B B 0 C p P C B
42 41 recnd A B B 0 C p P C B
43 33 42 negsubdi2d A B B 0 C p P A p 1 B C B = C B A p 1 B
44 33 42 negsubdid A B B 0 C p P A p 1 B C B = - A p 1 B + C B
45 43 44 eqtr3d A B B 0 C p P C B A p 1 B = - A p 1 B + C B
46 45 eqeq2d A B B 0 C p P p 2 = C B A p 1 B p 2 = - A p 1 B + C B
47 31 39 46 3bitrd A B B 0 C p P A p 1 + B p 2 B = C B p 2 = - A p 1 B + C B
48 12 17 readdcld A B B 0 C p P A p 1 + B p 2
49 48 recnd A B B 0 C p P A p 1 + B p 2
50 34 recnd A B B 0 C C
51 50 adantr A B B 0 C p P C
52 recn B B
53 52 anim1i B B 0 B B 0
54 53 3ad2ant2 A B B 0 C B B 0
55 54 adantr A B B 0 C p P B B 0
56 div11 A p 1 + B p 2 C B B 0 A p 1 + B p 2 B = C B A p 1 + B p 2 = C
57 49 51 55 56 syl3anc A B B 0 C p P A p 1 + B p 2 B = C B A p 1 + B p 2 = C
58 13 22 24 divnegd A B B 0 C p P A p 1 B = A p 1 B
59 8 recnd A B B 0 C A
60 59 adantr A B B 0 C p P A
61 10 recnd p P p 1
62 61 adantl A B B 0 C p P p 1
63 60 62 mulneg1d A B B 0 C p P A p 1 = A p 1
64 63 eqcomd A B B 0 C p P A p 1 = A p 1
65 64 oveq1d A B B 0 C p P A p 1 B = A p 1 B
66 58 65 eqtrd A B B 0 C p P A p 1 B = A p 1 B
67 renegcl A A
68 67 recnd A A
69 68 3ad2ant1 A B B 0 C A
70 69 adantr A B B 0 C p P A
71 div23 A p 1 B B 0 A p 1 B = A B p 1
72 70 62 55 71 syl3anc A B B 0 C p P A p 1 B = A B p 1
73 6 fveq1i X 1 = 1 0 2 C B 1
74 1ex 1 V
75 c0ex 0 V
76 1ne2 1 2
77 74 75 76 3pm3.2i 1 V 0 V 1 2
78 fvpr1g 1 V 0 V 1 2 1 0 2 C B 1 = 0
79 77 78 mp1i A B B 0 C 1 0 2 C B 1 = 0
80 73 79 syl5eq A B B 0 C X 1 = 0
81 80 adantr A B B 0 C p P X 1 = 0
82 81 oveq2d A B B 0 C p P p 1 X 1 = p 1 0
83 62 subid1d A B B 0 C p P p 1 0 = p 1
84 82 83 eqtr2d A B B 0 C p P p 1 = p 1 X 1
85 84 oveq2d A B B 0 C p P A B p 1 = A B p 1 X 1
86 66 72 85 3eqtrd A B B 0 C p P A p 1 B = A B p 1 X 1
87 86 oveq1d A B B 0 C p P - A p 1 B + C B = A B p 1 X 1 + C B
88 87 eqeq2d A B B 0 C p P p 2 = - A p 1 B + C B p 2 = A B p 1 X 1 + C B
89 47 57 88 3bitr3d A B B 0 C p P A p 1 + B p 2 = C p 2 = A B p 1 X 1 + C B
90 recn C C
91 90 adantl A C C
92 recn A A
93 92 adantr A C A
94 sub32 C A C C - A - C = C - C - A
95 subid C C C = 0
96 95 3ad2ant1 C A C C C = 0
97 96 oveq1d C A C C - C - A = 0 A
98 df-neg A = 0 A
99 97 98 eqtr4di C A C C - C - A = A
100 94 99 eqtr2d C A C A = C - A - C
101 91 93 91 100 syl3anc A C A = C - A - C
102 101 3adant2 A B B 0 C A = C - A - C
103 102 oveq1d A B B 0 C A B = C - A - C B
104 103 adantr A B B 0 C p P A B = C - A - C B
105 104 oveq1d A B B 0 C p P A B p 1 X 1 = C - A - C B p 1 X 1
106 105 oveq1d A B B 0 C p P A B p 1 X 1 + C B = C - A - C B p 1 X 1 + C B
107 106 eqeq2d A B B 0 C p P p 2 = A B p 1 X 1 + C B p 2 = C - A - C B p 1 X 1 + C B
108 89 107 bitrd A B B 0 C p P A p 1 + B p 2 = C p 2 = C - A - C B p 1 X 1 + C B
109 7 fveq1i Y 2 = 1 1 2 C A B 2
110 2ex 2 V
111 110 a1i A B B 0 C 2 V
112 resubcl C A C A
113 112 ancoms A C C A
114 113 3adant2 A B B 0 C C A
115 114 35 23 redivcld A B B 0 C C A B
116 76 a1i A B B 0 C 1 2
117 111 115 116 3jca A B B 0 C 2 V C A B 1 2
118 117 adantr A B B 0 C p P 2 V C A B 1 2
119 fvpr2g 2 V C A B 1 2 1 1 2 C A B 2 = C A B
120 118 119 syl A B B 0 C p P 1 1 2 C A B 2 = C A B
121 109 120 syl5eq A B B 0 C p P Y 2 = C A B
122 6 fveq1i X 2 = 1 0 2 C B 2
123 fvpr2g 2 V C B 1 2 1 0 2 C B 2 = C B
124 110 36 116 123 mp3an2i A B B 0 C 1 0 2 C B 2 = C B
125 122 124 syl5eq A B B 0 C X 2 = C B
126 125 adantr A B B 0 C p P X 2 = C B
127 121 126 oveq12d A B B 0 C p P Y 2 X 2 = C A B C B
128 34 8 resubcld A B B 0 C C A
129 128 recnd A B B 0 C C A
130 divsubdir C A C B B 0 C - A - C B = C A B C B
131 129 50 54 130 syl3anc A B B 0 C C - A - C B = C A B C B
132 131 eqcomd A B B 0 C C A B C B = C - A - C B
133 132 adantr A B B 0 C p P C A B C B = C - A - C B
134 127 133 eqtr2d A B B 0 C p P C - A - C B = Y 2 X 2
135 134 oveq1d A B B 0 C p P C - A - C B p 1 X 1 = Y 2 X 2 p 1 X 1
136 135 oveq1d A B B 0 C p P C - A - C B p 1 X 1 + C B = Y 2 X 2 p 1 X 1 + C B
137 136 eqeq2d A B B 0 C p P p 2 = C - A - C B p 1 X 1 + C B p 2 = Y 2 X 2 p 1 X 1 + C B
138 7 fveq1i Y 1 = 1 1 2 C A B 1
139 74 74 fvpr1 1 2 1 1 2 C A B 1 = 1
140 76 139 ax-mp 1 1 2 C A B 1 = 1
141 138 140 eqtri Y 1 = 1
142 74 75 fvpr1 1 2 1 0 2 C B 1 = 0
143 76 142 ax-mp 1 0 2 C B 1 = 0
144 73 143 eqtri X 1 = 0
145 141 144 oveq12i Y 1 X 1 = 1 0
146 1m0e1 1 0 = 1
147 145 146 eqtri Y 1 X 1 = 1
148 147 a1i A B B 0 C Y 1 X 1 = 1
149 148 oveq2d A B B 0 C Y 2 X 2 Y 1 X 1 = Y 2 X 2 1
150 110 115 116 119 mp3an2i A B B 0 C 1 1 2 C A B 2 = C A B
151 109 150 syl5eq A B B 0 C Y 2 = C A B
152 115 recnd A B B 0 C C A B
153 151 152 eqeltrd A B B 0 C Y 2
154 125 37 eqeltrd A B B 0 C X 2
155 153 154 subcld A B B 0 C Y 2 X 2
156 155 div1d A B B 0 C Y 2 X 2 1 = Y 2 X 2
157 149 156 eqtrd A B B 0 C Y 2 X 2 Y 1 X 1 = Y 2 X 2
158 157 oveq1d A B B 0 C Y 2 X 2 Y 1 X 1 p 1 X 1 = Y 2 X 2 p 1 X 1
159 158 125 oveq12d A B B 0 C Y 2 X 2 Y 1 X 1 p 1 X 1 + X 2 = Y 2 X 2 p 1 X 1 + C B
160 159 adantr A B B 0 C p P Y 2 X 2 Y 1 X 1 p 1 X 1 + X 2 = Y 2 X 2 p 1 X 1 + C B
161 160 eqcomd A B B 0 C p P Y 2 X 2 p 1 X 1 + C B = Y 2 X 2 Y 1 X 1 p 1 X 1 + X 2
162 161 eqeq2d A B B 0 C p P p 2 = Y 2 X 2 p 1 X 1 + C B p 2 = Y 2 X 2 Y 1 X 1 p 1 X 1 + X 2
163 108 137 162 3bitrd A B B 0 C p P A p 1 + B p 2 = C p 2 = Y 2 X 2 Y 1 X 1 p 1 X 1 + X 2
164 163 rabbidva A B B 0 C p P | A p 1 + B p 2 = C = p P | p 2 = Y 2 X 2 Y 1 X 1 p 1 X 1 + X 2
165 5 a1i A B B 0 C G = p P | A p 1 + B p 2 = C
166 74 110 pm3.2i 1 V 2 V
167 36 75 jctil A B B 0 C 0 V C B
168 fprg 1 V 2 V 0 V C B 1 2 1 0 2 C B : 1 2 0 C B
169 166 167 116 168 mp3an2i A B B 0 C 1 0 2 C B : 1 2 0 C B
170 0red A B B 0 C 0
171 170 36 prssd A B B 0 C 0 C B
172 169 171 fssd A B B 0 C 1 0 2 C B : 1 2
173 6 feq1i X : 1 2 1 0 2 C B : 1 2
174 172 173 sylibr A B B 0 C X : 1 2
175 reex V
176 prex 1 2 V
177 175 176 elmap X 1 2 X : 1 2
178 174 177 sylibr A B B 0 C X 1 2
179 1 oveq2i I = 1 2
180 3 179 eqtri P = 1 2
181 178 180 eleqtrrdi A B B 0 C X P
182 115 74 jctil A B B 0 C 1 V C A B
183 fprg 1 V 2 V 1 V C A B 1 2 1 1 2 C A B : 1 2 1 C A B
184 166 182 116 183 mp3an2i A B B 0 C 1 1 2 C A B : 1 2 1 C A B
185 1red A B B 0 C 1
186 185 115 prssd A B B 0 C 1 C A B
187 184 186 fssd A B B 0 C 1 1 2 C A B : 1 2
188 7 feq1i Y : 1 2 1 1 2 C A B : 1 2
189 187 188 sylibr A B B 0 C Y : 1 2
190 175 176 elmap Y 1 2 Y : 1 2
191 189 190 sylibr A B B 0 C Y 1 2
192 191 180 eleqtrrdi A B B 0 C Y P
193 0ne1 0 1
194 77 78 ax-mp 1 0 2 C B 1 = 0
195 73 194 eqtri X 1 = 0
196 74 74 76 3pm3.2i 1 V 1 V 1 2
197 fvpr1g 1 V 1 V 1 2 1 1 2 C A B 1 = 1
198 196 197 ax-mp 1 1 2 C A B 1 = 1
199 138 198 eqtri Y 1 = 1
200 195 199 neeq12i X 1 Y 1 0 1
201 193 200 mpbir X 1 Y 1
202 201 a1i A B B 0 C X 1 Y 1
203 eqid Y 2 X 2 Y 1 X 1 = Y 2 X 2 Y 1 X 1
204 1 2 3 4 203 rrx2linesl X P Y P X 1 Y 1 X L Y = p P | p 2 = Y 2 X 2 Y 1 X 1 p 1 X 1 + X 2
205 181 192 202 204 syl3anc A B B 0 C X L Y = p P | p 2 = Y 2 X 2 Y 1 X 1 p 1 X 1 + X 2
206 164 165 205 3eqtr4d A B B 0 C G = X L Y