Metamath Proof Explorer


Theorem sphere

Description: A sphere with center X and radius R in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023)

Ref Expression
Hypotheses spheres.b B=BaseW
spheres.l S=SphereW
spheres.d D=distW
Assertion sphere WVXBR0+∞XSR=pB|pDX=R

Proof

Step Hyp Ref Expression
1 spheres.b B=BaseW
2 spheres.l S=SphereW
3 spheres.d D=distW
4 1 2 3 spheres WVS=xB,r0+∞pB|pDx=r
5 4 3ad2ant1 WVXBR0+∞S=xB,r0+∞pB|pDx=r
6 oveq2 x=XpDx=pDX
7 id r=Rr=R
8 6 7 eqeqan12d x=Xr=RpDx=rpDX=R
9 8 rabbidv x=Xr=RpB|pDx=r=pB|pDX=R
10 9 adantl WVXBR0+∞x=Xr=RpB|pDx=r=pB|pDX=R
11 simp2 WVXBR0+∞XB
12 simp3 WVXBR0+∞R0+∞
13 1 fvexi BV
14 13 rabex pB|pDX=RV
15 14 a1i WVXBR0+∞pB|pDX=RV
16 5 10 11 12 15 ovmpod WVXBR0+∞XSR=pB|pDX=R