Metamath Proof Explorer


Theorem sphere

Description: A sphere with center X and radius R in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023)

Ref Expression
Hypotheses spheres.b B = Base W
spheres.l S = Sphere W
spheres.d D = dist W
Assertion sphere W V X B R 0 +∞ X S R = p B | p D X = R

Proof

Step Hyp Ref Expression
1 spheres.b B = Base W
2 spheres.l S = Sphere W
3 spheres.d D = dist W
4 1 2 3 spheres W V S = x B , r 0 +∞ p B | p D x = r
5 4 3ad2ant1 W V X B R 0 +∞ S = x B , r 0 +∞ p B | p D x = r
6 oveq2 x = X p D x = p D X
7 id r = R r = R
8 6 7 eqeqan12d x = X r = R p D x = r p D X = R
9 8 rabbidv x = X r = R p B | p D x = r = p B | p D X = R
10 9 adantl W V X B R 0 +∞ x = X r = R p B | p D x = r = p B | p D X = R
11 simp2 W V X B R 0 +∞ X B
12 simp3 W V X B R 0 +∞ R 0 +∞
13 1 fvexi B V
14 13 rabex p B | p D X = R V
15 14 a1i W V X B R 0 +∞ p B | p D X = R V
16 5 10 11 12 15 ovmpod W V X B R 0 +∞ X S R = p B | p D X = R