| Step | Hyp | Ref | Expression | 
						
							| 1 |  | spheres.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | spheres.l | ⊢ 𝑆  =  ( Sphere ‘ 𝑊 ) | 
						
							| 3 |  | spheres.d | ⊢ 𝐷  =  ( dist ‘ 𝑊 ) | 
						
							| 4 | 1 2 3 | spheres | ⊢ ( 𝑊  ∈  𝑉  →  𝑆  =  ( 𝑥  ∈  𝐵 ,  𝑟  ∈  ( 0 [,] +∞ )  ↦  { 𝑝  ∈  𝐵  ∣  ( 𝑝 𝐷 𝑥 )  =  𝑟 } ) ) | 
						
							| 5 | 4 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑅  ∈  ( 0 [,] +∞ ) )  →  𝑆  =  ( 𝑥  ∈  𝐵 ,  𝑟  ∈  ( 0 [,] +∞ )  ↦  { 𝑝  ∈  𝐵  ∣  ( 𝑝 𝐷 𝑥 )  =  𝑟 } ) ) | 
						
							| 6 |  | oveq2 | ⊢ ( 𝑥  =  𝑋  →  ( 𝑝 𝐷 𝑥 )  =  ( 𝑝 𝐷 𝑋 ) ) | 
						
							| 7 |  | id | ⊢ ( 𝑟  =  𝑅  →  𝑟  =  𝑅 ) | 
						
							| 8 | 6 7 | eqeqan12d | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑟  =  𝑅 )  →  ( ( 𝑝 𝐷 𝑥 )  =  𝑟  ↔  ( 𝑝 𝐷 𝑋 )  =  𝑅 ) ) | 
						
							| 9 | 8 | rabbidv | ⊢ ( ( 𝑥  =  𝑋  ∧  𝑟  =  𝑅 )  →  { 𝑝  ∈  𝐵  ∣  ( 𝑝 𝐷 𝑥 )  =  𝑟 }  =  { 𝑝  ∈  𝐵  ∣  ( 𝑝 𝐷 𝑋 )  =  𝑅 } ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝑊  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑅  ∈  ( 0 [,] +∞ ) )  ∧  ( 𝑥  =  𝑋  ∧  𝑟  =  𝑅 ) )  →  { 𝑝  ∈  𝐵  ∣  ( 𝑝 𝐷 𝑥 )  =  𝑟 }  =  { 𝑝  ∈  𝐵  ∣  ( 𝑝 𝐷 𝑋 )  =  𝑅 } ) | 
						
							| 11 |  | simp2 | ⊢ ( ( 𝑊  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑅  ∈  ( 0 [,] +∞ ) )  →  𝑋  ∈  𝐵 ) | 
						
							| 12 |  | simp3 | ⊢ ( ( 𝑊  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑅  ∈  ( 0 [,] +∞ ) )  →  𝑅  ∈  ( 0 [,] +∞ ) ) | 
						
							| 13 | 1 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 14 | 13 | rabex | ⊢ { 𝑝  ∈  𝐵  ∣  ( 𝑝 𝐷 𝑋 )  =  𝑅 }  ∈  V | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝑊  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑅  ∈  ( 0 [,] +∞ ) )  →  { 𝑝  ∈  𝐵  ∣  ( 𝑝 𝐷 𝑋 )  =  𝑅 }  ∈  V ) | 
						
							| 16 | 5 10 11 12 15 | ovmpod | ⊢ ( ( 𝑊  ∈  𝑉  ∧  𝑋  ∈  𝐵  ∧  𝑅  ∈  ( 0 [,] +∞ ) )  →  ( 𝑋 𝑆 𝑅 )  =  { 𝑝  ∈  𝐵  ∣  ( 𝑝 𝐷 𝑋 )  =  𝑅 } ) |