Step |
Hyp |
Ref |
Expression |
1 |
|
spheres.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
spheres.l |
⊢ 𝑆 = ( Sphere ‘ 𝑊 ) |
3 |
|
spheres.d |
⊢ 𝐷 = ( dist ‘ 𝑊 ) |
4 |
1 2 3
|
spheres |
⊢ ( 𝑊 ∈ 𝑉 → 𝑆 = ( 𝑥 ∈ 𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ ( 0 [,] +∞ ) ) → 𝑆 = ( 𝑥 ∈ 𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑝 𝐷 𝑥 ) = ( 𝑝 𝐷 𝑋 ) ) |
7 |
|
id |
⊢ ( 𝑟 = 𝑅 → 𝑟 = 𝑅 ) |
8 |
6 7
|
eqeqan12d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → ( ( 𝑝 𝐷 𝑥 ) = 𝑟 ↔ ( 𝑝 𝐷 𝑋 ) = 𝑅 ) ) |
9 |
8
|
rabbidv |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) → { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } = { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑋 ) = 𝑅 } ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ ( 0 [,] +∞ ) ) ∧ ( 𝑥 = 𝑋 ∧ 𝑟 = 𝑅 ) ) → { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } = { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑋 ) = 𝑅 } ) |
11 |
|
simp2 |
⊢ ( ( 𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ ( 0 [,] +∞ ) ) → 𝑋 ∈ 𝐵 ) |
12 |
|
simp3 |
⊢ ( ( 𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ ( 0 [,] +∞ ) ) → 𝑅 ∈ ( 0 [,] +∞ ) ) |
13 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
14 |
13
|
rabex |
⊢ { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑋 ) = 𝑅 } ∈ V |
15 |
14
|
a1i |
⊢ ( ( 𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ ( 0 [,] +∞ ) ) → { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑋 ) = 𝑅 } ∈ V ) |
16 |
5 10 11 12 15
|
ovmpod |
⊢ ( ( 𝑊 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑅 ∈ ( 0 [,] +∞ ) ) → ( 𝑋 𝑆 𝑅 ) = { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑋 ) = 𝑅 } ) |