Metamath Proof Explorer


Theorem spheres

Description: The spheres for given centers and radii in a metric space (or any extensible structure having a base set and a distance function). (Contributed by AV, 22-Jan-2023)

Ref Expression
Hypotheses spheres.b 𝐵 = ( Base ‘ 𝑊 )
spheres.l 𝑆 = ( Sphere ‘ 𝑊 )
spheres.d 𝐷 = ( dist ‘ 𝑊 )
Assertion spheres ( 𝑊𝑉𝑆 = ( 𝑥𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) )

Proof

Step Hyp Ref Expression
1 spheres.b 𝐵 = ( Base ‘ 𝑊 )
2 spheres.l 𝑆 = ( Sphere ‘ 𝑊 )
3 spheres.d 𝐷 = ( dist ‘ 𝑊 )
4 2 a1i ( 𝑊𝑉𝑆 = ( Sphere ‘ 𝑊 ) )
5 df-sph Sphere = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 ) = 𝑟 } ) )
6 fveq2 ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) )
7 1 eqcomi ( Base ‘ 𝑊 ) = 𝐵
8 7 a1i ( 𝑤 = 𝑊 → ( Base ‘ 𝑊 ) = 𝐵 )
9 6 8 eqtrd ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝐵 )
10 eqidd ( 𝑤 = 𝑊 → ( 0 [,] +∞ ) = ( 0 [,] +∞ ) )
11 fveq2 ( 𝑤 = 𝑊 → ( dist ‘ 𝑤 ) = ( dist ‘ 𝑊 ) )
12 3 eqcomi ( dist ‘ 𝑊 ) = 𝐷
13 12 a1i ( 𝑤 = 𝑊 → ( dist ‘ 𝑊 ) = 𝐷 )
14 11 13 eqtrd ( 𝑤 = 𝑊 → ( dist ‘ 𝑤 ) = 𝐷 )
15 14 oveqd ( 𝑤 = 𝑊 → ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 ) = ( 𝑝 𝐷 𝑥 ) )
16 15 eqeq1d ( 𝑤 = 𝑊 → ( ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 ) = 𝑟 ↔ ( 𝑝 𝐷 𝑥 ) = 𝑟 ) )
17 9 16 rabeqbidv ( 𝑤 = 𝑊 → { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 ) = 𝑟 } = { 𝑝𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } )
18 9 10 17 mpoeq123dv ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 ) = 𝑟 } ) = ( 𝑥𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) )
19 elex ( 𝑊𝑉𝑊 ∈ V )
20 fvex ( Base ‘ 𝑊 ) ∈ V
21 1 20 eqeltri 𝐵 ∈ V
22 ovex ( 0 [,] +∞ ) ∈ V
23 21 22 mpoex ( 𝑥𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) ∈ V
24 23 a1i ( 𝑊𝑉 → ( 𝑥𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) ∈ V )
25 5 18 19 24 fvmptd3 ( 𝑊𝑉 → ( Sphere ‘ 𝑊 ) = ( 𝑥𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) )
26 4 25 eqtrd ( 𝑊𝑉𝑆 = ( 𝑥𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) )