| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spheres.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
spheres.l |
⊢ 𝑆 = ( Sphere ‘ 𝑊 ) |
| 3 |
|
spheres.d |
⊢ 𝐷 = ( dist ‘ 𝑊 ) |
| 4 |
2
|
a1i |
⊢ ( 𝑊 ∈ 𝑉 → 𝑆 = ( Sphere ‘ 𝑊 ) ) |
| 5 |
|
df-sph |
⊢ Sphere = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 ) = 𝑟 } ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = ( Base ‘ 𝑊 ) ) |
| 7 |
1
|
eqcomi |
⊢ ( Base ‘ 𝑊 ) = 𝐵 |
| 8 |
7
|
a1i |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑊 ) = 𝐵 ) |
| 9 |
6 8
|
eqtrd |
⊢ ( 𝑤 = 𝑊 → ( Base ‘ 𝑤 ) = 𝐵 ) |
| 10 |
|
eqidd |
⊢ ( 𝑤 = 𝑊 → ( 0 [,] +∞ ) = ( 0 [,] +∞ ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑤 = 𝑊 → ( dist ‘ 𝑤 ) = ( dist ‘ 𝑊 ) ) |
| 12 |
3
|
eqcomi |
⊢ ( dist ‘ 𝑊 ) = 𝐷 |
| 13 |
12
|
a1i |
⊢ ( 𝑤 = 𝑊 → ( dist ‘ 𝑊 ) = 𝐷 ) |
| 14 |
11 13
|
eqtrd |
⊢ ( 𝑤 = 𝑊 → ( dist ‘ 𝑤 ) = 𝐷 ) |
| 15 |
14
|
oveqd |
⊢ ( 𝑤 = 𝑊 → ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 ) = ( 𝑝 𝐷 𝑥 ) ) |
| 16 |
15
|
eqeq1d |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 ) = 𝑟 ↔ ( 𝑝 𝐷 𝑥 ) = 𝑟 ) ) |
| 17 |
9 16
|
rabeqbidv |
⊢ ( 𝑤 = 𝑊 → { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 ) = 𝑟 } = { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) |
| 18 |
9 10 17
|
mpoeq123dv |
⊢ ( 𝑤 = 𝑊 → ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑝 ( dist ‘ 𝑤 ) 𝑥 ) = 𝑟 } ) = ( 𝑥 ∈ 𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) ) |
| 19 |
|
elex |
⊢ ( 𝑊 ∈ 𝑉 → 𝑊 ∈ V ) |
| 20 |
|
fvex |
⊢ ( Base ‘ 𝑊 ) ∈ V |
| 21 |
1 20
|
eqeltri |
⊢ 𝐵 ∈ V |
| 22 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
| 23 |
21 22
|
mpoex |
⊢ ( 𝑥 ∈ 𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) ∈ V |
| 24 |
23
|
a1i |
⊢ ( 𝑊 ∈ 𝑉 → ( 𝑥 ∈ 𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) ∈ V ) |
| 25 |
5 18 19 24
|
fvmptd3 |
⊢ ( 𝑊 ∈ 𝑉 → ( Sphere ‘ 𝑊 ) = ( 𝑥 ∈ 𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) ) |
| 26 |
4 25
|
eqtrd |
⊢ ( 𝑊 ∈ 𝑉 → 𝑆 = ( 𝑥 ∈ 𝐵 , 𝑟 ∈ ( 0 [,] +∞ ) ↦ { 𝑝 ∈ 𝐵 ∣ ( 𝑝 𝐷 𝑥 ) = 𝑟 } ) ) |